Florida Tech Logo
    • Login
    View Item 
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smartphone Video Guidance Sensor in High-Altitude UAV Precision Landing

    Thumbnail
    View/Open
    SILVACOTTA-THESIS-2023.pdf (8.617Mb)
    FinalThesisMS_SilvaCotta.zip (10.76Mb)
    Date
    2023-05
    Author
    Silva Cotta, Joao Leonardo
    Metadata
    Show full item record
    Abstract
    The Smartphone Video Guidance Sensor (SVGS) is an emerging technology developed by NASA Marshall Space Flight Center that uses a vision-based approach to accurately estimate the six-state position and orientation vectors of an illuminated target of known dimensions with respect to a coordinate frame fixed to the camera. SVGS is a software-based sensor that can be deployed using a host platform’s resources (CPU and camera) for proximity operations and formation flight of drones or spacecraft. The SVGS output is calculated based on photogrammetric analysis of the light blobs in each image; its accuracy in linear and angular motion at different velocities has previously been successfully demonstrated [7]. SVGS has several potential applications in guidance, navigation, motion control, and proximity operations as a reduced-cost, compact, reliable option to competing technologies such as LiDAR or infrared sensing. One of the applications envisioned by NASA for SVGS is planetary/lunar autonomous landing. This paper aims to compare the SVGS performance in autonomous landing with existing technologies: a combination of infrared beacon technology (IRLock) and LiDAR. The comparison is based on a precision landing experiment using ROS, ROS2, and PX4 Firmware. Results suggest that SVGS performs better than the existing IRLock with LiDAR fusion.
    URI
    http://hdl.handle.net/11141/3705
    Collections
    • Theses/Dissertations

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Scholarship RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Read ItemsStatistics by CountryMost Read Authors

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV