Florida Tech Logo
    • Login
    View Item 
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-negative Matrix Factorization in the Identification of Co-mutations

    Thumbnail
    View/Open
    KOLAR-THESIS-2022.pdf (8.931Mb)
    Date
    2022-12
    Author
    Kolar, Michael Robert
    Metadata
    Show full item record
    Abstract
    One of the difficulties of genetic research is the asymmetrical relationship between data collection techniques and data analysis techniques. The goal of this research was to test a novel application of non-negative matrix factorization, which would allow researchers to more easily identify co-mutations. Those co-mutations then can then be further verified by frequency analysis. This pruning process allows researchers to identify more fruitful research opportunities, saving time, energy, and funding. Past research has utilized non-negative matrix factorization to extract factors which meaningfully express underlying data features. This study extends the depth of non-negative matrix factorization knowledge in various ways. First, a novel cost function was utilized to convert raw genetic data into numerical values appropriate for matrix operations. Second, this research utilized the alternating non-negative least squares matrix factorization variant for its faster convergence time compared to the more traditional multiplicative update approach. Third, traditionally data sets were not factored at multiple factor counts, but this study extends previously established methods by performing an analysis over multiple factor counts. Fourth, this study suggests evidence that factors produced by non-negative matrix factorization contain co-mutations, which were verified by a statistical analysis. Fifth, this study demonstrated that non-negative matrix factorization has an unsupervised ability to partition a data set into chronologically separated clusters. This research indicates that non-negative matrix factorization is a scalable algorithm for identifying genetic co-mutations within a practical computational time frame.
    URI
    http://hdl.handle.net/11141/3614
    Collections
    • Theses/Dissertations

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Scholarship RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Read ItemsStatistics by CountryMost Read Authors

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV