• Login
    View Item 
    •   Scholarship Repository at Florida Tech
    • College of Science
    • Physics and Space Sciences
    • Publications
    • View Item
    •   Scholarship Repository at Florida Tech
    • College of Science
    • Physics and Space Sciences
    • Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nicmos polarimetry of "polar-scattered" Seyfert 1 galaxies

    Thumbnail
    View/Open
    ApJ20111F.pdf (489.6Kb)
    Date
    2011-08-16
    Author
    Batcheldor, Daniel P.
    Robinson, Andrew Edward
    Axon, David J.
    Young, Stuart
    Quinn, S.
    Smith, James E.
    Hough, James H.
    Alexander, David M.
    Metadata
    Show full item record
    Abstract
    The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 μm imaging polarimetry of six "polar-scattered" Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus (<058) is significantly polarized in only three objects, but five of the six exhibit polarization in a 058-15 circum-nuclear annulus. In Fairall 51 and ESO 323-G077, the polarization position angle at 2 μm (θ2 μm) is consistent with the average for the optical spectrum(θv), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC3227. In both NGC 4593 and Mrk 766, there is a large difference between θ2 μm and θv off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC4593, but there is no clear explanation in the case of the strongly polarized Mrk766. Lastly, in Mrk1239, a large change (60°) in θ2 μm between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2μm, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 μm emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.
    URI
    http://hdl.handle.net/11141/347
    Collections
    • Publications

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Scholarship RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Read ItemsStatistics by CountryMost Read Authors

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV