Show simple item record

dc.contributor.advisorPalotai, Csaba
dc.contributor.authorSankar, Ramanakumar
dc.date.accessioned2021-08-09T16:40:48Z
dc.date.available2021-08-09T16:40:48Z
dc.date.created2021-07
dc.date.issued2021-07
dc.date.submittedJuly 2021
dc.identifier.urihttp://hdl.handle.net/11141/3408
dc.descriptionThesis (Ph.D.) - Florida Institute of Technology, 2021.en_US
dc.description.abstractJupiter’s atmosphere features a variety of clouds that are formed from the interplay of chemistry and atmospheric dynamics, from the deep red of the Great Red Spot to the high altitude white ammonia clouds present in the zones. Beneath these upper level clouds, water condensation occurs, and sporadically leads to the formation of towering convective storms, driven by the release of large amounts of latent heat. These storms result in a widespread disruption of the cloud and dynamical structure of the atmosphere at the latitude where they form, making the study of these events paramount in understanding the dynamics at depth, and the role of water in the jovian atmosphere. In this work, we use the Explicit Planetary hybrid-Isentropic Coordinate (EPIC) General Circulation Model (GCM) to study the jovian atmosphere, with a focus on moist convective storm formation from water condensation. We present the addition of a sub-grid scale moist convective module to model convective water cloud formation. We focus on the 24° N latitude, the location of a high speed jetstream, where convective upwellings have been observed every 4-5 years. We find that the convective ability, and vertical mass and energy flux of the atmosphere is strongly correlated with the amount of water, and determine an upper limit of the amount of water in the atmosphere as twice the solar [O/H] ratio.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.rightsCC BY 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleA Numerical Study of Jovian Moist Convection with a new Convective Adjustment Scheme, and Implications for Jupiter's Water Abundanceen_US
dc.typeDissertationen_US
dc.date.updated2021-08-05T14:26:05Z
thesis.degree.nameDoctorate of Philosophy in Space Sciencesen_US
thesis.degree.levelDoctoralen_US
thesis.degree.disciplineSpace Sciencesen_US
thesis.degree.departmentAerospace, Physics and Space Sciencesen_US
thesis.degree.grantorFlorida Institute of Technologyen_US
dc.type.materialtext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0