Florida Tech Logo
    • Login
    View Item 
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pattern Based Classification of Chronic Kidney Disease Patients

    Thumbnail
    View/Open
    Thesis PDF (1.713Mb)
    Date
    2021-05
    Author
    Moreno, Megan
    Moreno Cole, Melissa Megan
    Metadata
    Show full item record
    Abstract
    We apply a pattern-based classification method to identify clinical and genomic features associated with the progression of Chronic Kidney Disease (CKD). We analyze the African-American Study of Chronic Kidney Disease with Hypertension (AASK) dataset and construct a decision-tree classification model, consisting15 combinatorial patterns of clinical features and single nucleotide polymorphisms (SNPs), seven of which are associated with slow progression and eight with rapid progression of renal disease among AASK patients. We identify four clinical features and two SNPs that can accurately predict CKD progression. These features are validated with using sophisticated machine learning techniques including Random Forest, Nearest Neighbor, Support Vector Machines, Neural Networks, Logistic Regression, and Naive Bayes supervised learning methods. Clinical and genomic features identified in our experiments may be used in a future study to develop new therapeutic interventions for CKD patients.
    URI
    http://hdl.handle.net/11141/3366
    Collections
    • Theses/Dissertations

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Scholarship RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Read ItemsStatistics by CountryMost Read Authors

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV