Synthesis, Structure and Reactivity of Heterobimetallic Complexes for Small Molecule Activation and Catalysis
Abstract
Society remains tied to fossil fuels while increasing pressure on the climate suggests a transition to
renewable energy resources. However, the efficiency of processes enabling such a transition has
considerable room for improvement. Relevantly, natural systems have evolved enzymes that enable
a very efficient conversion of small molecules such as H2, CO and CO2,1 and perform these conversions
more selectively and under milder conditions than current industrial processes. Many of these
enzymes rely on multimetallic, and often heterometallic, active sites of abundant transition metals, for
example in [NiFe] or [CuMo] carbon monoxide dehydrogenases.2 In addition, close proximity between
metal centers in multimetallic compounds is considered favorable to the occurrence of enhanced
catalytic properties for a variety of reactions.3 Thus, I studied the synthesis and properties of
homogeneous bimetallic complexes of abundant, primarily first‐row transition metals during my Link
Foundation Energy Fellowship.