Florida Tech Logo
    • Login
    View Item 
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    •   Scholarship Repository at Florida Tech
    • College of Engineering and Science
    • Theses/Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Graphical User Interface for ECG Signals Classification Using Statistical Features Analysis

    Thumbnail
    View/Open
    Thesis PDF (3.660Mb)
    Date
    2020-08
    Author
    Aldosari, Mousa Hammad S.
    Metadata
    Show full item record
    Abstract
    Cardiac diseases are the most common cause of mortality in the world. The detection of cardiac arrhythmias is not a straightforward process, since minor variations in the electrocardiogram (ECG) signals cannot be easily identified manually. Therefore, automatic detection and classification of cardiac arrhythmia would shorten the diagnostic time and accelerate medical intervention resulting in reducing the mortality rate. In this thesis, I have developed a simple and low-cost computer-aided diagnostic system using MATLAB-based Graphical User Interface (GUI) to facilitate fast operation and access to the data along with the overall accuracy of the system. The acquired ECG signals are processed by wavelet-based filtering and feature extraction techniques using Daubechies (db) wavelets to determine a combination of 15 statistical features. The significant wavelet features were subsequently used as categorical inputs to perform pattern recognition of the ECG signals using artificial neural network (ANN), support vector machine (SVM), and random forest (RF) and classify the output into normal or abnormal classes. The performance of the proposed model was evaluated using Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database (MIT-BIH AD) over 46 ECG records including normal and arrhythmias signals. The overall system performance was achieved with 98.3%, 95.65%, and 100% overall accuracy using ANN, SVM, and RF, respectively.
    URI
    http://hdl.handle.net/11141/3157
    Collections
    • Theses/Dissertations

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of Scholarship RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Most Read ItemsStatistics by CountryMost Read Authors

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV