Show simple item record

dc.contributor.advisorKostanic, Ivica
dc.contributor.authorSalah, Monera Elhashmi M
dc.date.accessioned2019-09-25T13:05:46Z
dc.date.available2019-09-25T13:05:46Z
dc.date.created2019-05
dc.date.issued2019-05
dc.date.submittedMay 2019
dc.identifier.urihttp://hdl.handle.net/11141/2917
dc.descriptionThesis (Ph.D.) - Florida Institute of Technology, 2019en_US
dc.description.abstractThe research in millimeter-wave (mm-wave) area is of special interest to the upcoming fifth generation (5G) communications. The 60 GHz band is one of the most attractive 5G bands. That is due to the abundantly available spectrum, higher achievable throughput, and lower latency when compared to the conventional 4G bands. This research addresses the 60 GHz system level performance evaluation for cellular downlink transmission in an outdoor environment. Using a custom system level simulator, different parameters associated with the mm-wave communication system are predicted. These parameters include path loss (PL), signal-to-noiseplus-interference-ratio (SINR), number of antenna elements and several arrays implementations. Taking into consideration the effect of multipath fading, two packet scheduling algorithms are exploited, namely maximum rate (Max C/I) and Round Robin (RR). The performance is evaluated under various phased antenna configurations at both transmitter and receiver sides. An urban femtocells environment with both 25 m and 50 m hexagonal cell radii is considered for performance evaluation. At 60 GHz operating frequency, allocation of the radio resources is not standardized. Therefore, different implementations can be tested to find how good a specific scheduler is under the same conditions of the propagation channel. The system design, beamforming technique, phased arrays implementations, scheduling algorithms and simulator findings are described in details in this work. From the simulation results, we conclude that scheduling scheme, beamforming and antenna array design play an essential role to offset the effect of fading and interference. Results illustrate that the performance variation between the two scheduling algorithms is relatively small. Antenna element selectivity has a huge impact on system performance. Also, the importance of steering plane is unequal in the case of cellular downlink transmission.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.rightsCC BY 4.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcodeen_US
dc.titleSystem Level Performance Evaluation of 60 GHz Downlink under Different Beamforming and Scheduling Methodsen_US
dc.typeDissertationen_US
dc.date.updated2019-06-13T15:55:10Z
thesis.degree.nameDoctorate of Philosophy in Electrical Engineeringen_US
thesis.degree.levelDoctoralen_US
thesis.degree.disciplineElectrical Engineeringen_US
thesis.degree.departmentComputer Engineering and Sciencesen_US
thesis.degree.grantorFlorida Institute of Technologyen_US
dc.type.materialtext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0