Show simple item record

dc.contributor.authorGenis, Anatoly M.
dc.date.accessioned2017-11-03T18:26:22Z
dc.date.available2017-11-03T18:26:22Z
dc.date.issued1984-12
dc.identifier.citationGenis, A. M. (1984). ON FINITE ELEMENT METHODS FOR THE EULER-POISSON-DARBOUX EQUATION. SIAM Journal on Numerical Analysis, 21(6), 1080-1106.en_US
dc.identifier.issn00361429
dc.identifier.urihttp://hdl.handle.net/11141/2190
dc.descriptionDirichlet problems, estimation, euler-poisson-darboux equation, hyperbolic equations, mathematical techniquesen_US
dc.description.abstractWe deal primarily with the derivation of various convergence estimates for some semidiscrete and fully discrete procedures which might be used in the approximation of exact solutions of initial-boundary value problems with homogeneous Dirichlet boundary conditions for the Euler-Poisson-Darboux equation. Although the equation is of hyperbolic type, the results are somewhat analogous to those known for parabolic equations, due to the presence of a limited 'smoothing' property. This paper contain L//2 estimates, maximum norm estimates, negative norm estimates, interior estimates of difference quotients and superconvergence estimates of the error.en_US
dc.language.isoen_USen_US
dc.rights© 1984 Society for Industrial and Applied Mathematicsen_US
dc.rights.urihttp://www.sherpa.ac.uk/romeo/issn/1064-8275/en_US
dc.titleON FINITE ELEMENT METHODS FOR THE EULER-POISSON-DARBOUX EQUATION.en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record