Show simple item record

dc.contributor.authorLabuschagne, Christiaan F.
dc.contributor.authorStigter, Edwin C.A.
dc.contributor.authorHendriks, Margriet M.W.B.
dc.contributor.authorBerger, Ruud
dc.contributor.authorRokach, Joshua
dc.contributor.authorKorswagen, Hendrik C.
dc.contributor.authorBrenkman, Arjan B.
dc.identifier.citationLabuschagne, C.F., Stigter, E.C.A., Hendriks, M.M.W.B., Berger, R., Rokach, J., Korswagen, H.C., Brenkman, A.B. Quantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurement (2013) Aging Cell, 12 (2), pp. 214-223. Cited 20 times.en_US
dc.descriptionAging, C. elegans F3-isoprostanes, Insulin/IGF-1, Mitohormesis, Oxidative damage, ROS, SODen_US
dc.description.abstractOxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach for accurate, sensitive, and linear in vivo quantification of endogenous oxidative damage in the nematode Caenorhabditis elegans, based on F3-isoprostanes. F3-isoprostanes are prostaglandin-like markers of oxidative damage derived from lipid peroxidation by Reactive Oxygen Species (ROS). Oxidative damage was quantified in whole animals and in multiple cellular compartments, including mitochondria and peroxisomes. Mutants of the mitochondrial electron transport proteins mev-1 and clk-1 showed increased oxidative damage levels. Furthermore, analysis of Superoxide Dismutase (sod) and Catalase (ctl) mutants uncovered that oxidative damage levels cannot be inferred from the phenotype of resistance to pro-oxidants alone and revealed high oxidative damage in a small group of chemosensory neurons. Longitudinal analysis of aging nematodes revealed that oxidative damage increased specifically with postreproductive age. Remarkably, aging of the stress-resistant and long-lived daf-2 insulin/IGF-1 receptor mutant involved distinct daf-16-dependent phases of oxidative damage including a temporal increase at young adulthood. These observations are consistent with a hormetic response to ROS. © 2012 The Authors. © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.en_US
dc.rightsCopyright © 2013 The Authorsen_US
dc.titleQuantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurementen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Copyright © 2013 The Authors
Except where otherwise noted, this item's license is described as Copyright © 2013 The Authors