Show simple item record

dc.contributor.authorGeorgy, Cyril
dc.contributor.authorMeynet, Georges
dc.contributor.authorEkström, Sylvia
dc.contributor.authorWade, Gregg A.
dc.contributor.authorPetit, Véronique
dc.contributor.authorKeszthelyi, Zsolt
dc.contributor.authorHirschi, Raphael
dc.date.accessioned2017-10-06T17:39:15Z
dc.date.available2017-10-06T17:39:15Z
dc.date.issued2017-03-01
dc.identifier.citationGeorgy, C., Meynet, G., Ekström, S., Wade, G.A., Petit, V., Keszthelyi, Z., Hirschi, R. Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors (2017) Astronomy and Astrophysics, 599, art. no. L5, . Cited 1 time.en_US
dc.identifier.urihttp://hdl.handle.net/11141/1820
dc.descriptionStars: evolution, Stars: magnetic field, Stars: mass-loss, Stars: massive, Supernovae: generalen_US
dc.description.abstractNear-solar metallicity (and low-redshift) pair-instability supernova (PISN) candidates challenge stellar evolution models. Indeed, at such a metallicity, even an initially very massive star generally loses so much mass by stellar winds that it will avoid the electron-positron pair-creation instability. We use recent results showing that a magnetic field at the surface of a massive star can significantly reduce its effective mass-loss rate to compute magnetic models of very massive stars (VMSs) at solar metallicity and explore the possibility that such stars end as PISNe. We implement the quenching of the mass loss produced by a surface dipolar magnetic field into the Geneva stellar evolution code and compute new stellar models with an initial mass of 200 MȮ at solar metallicity, with and without rotation. This considerably reduces the total amount of mass lost by the star during its life. For the non-rotating model, the total (CO-core) mass of the models is 72.8 MȮ (70.1 MȮ) at the onset of the electron-positron pair-creation instability. For the rotating model, we obtain 65.6 MȮ (62.4 MȮ). In both cases, a significant fraction of the internal mass lies in the region where pair instability occurs in the log (T)-log (ρ) plane. The interaction of the reduced mass loss with the magnetic field efficiently brakes the surface of the rotating model, producing a strong shear and hence a very efficient mixing that makes the star evolve nearly homogeneously. The core characteristics of our models indicate that solar metallicity models of magnetic VMSs may evolve to PISNe (and pulsation PISNe). © ESO, 2017.en_US
dc.language.isoen_USen_US
dc.rights© 2017 European Southern Observatory (ESO).en_US
dc.rights.urihttps://www.aanda.org/author-information/copyrighten_US
dc.titlePossible pair-instability supernovae at solar metallicity from magnetic stellar progenitorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1051/0004-6361/201730401


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record