Show simple item record

dc.contributor.authorYin, Yunfeng
dc.date.accessioned2017-06-13T19:21:22Z
dc.date.available2017-06-13T19:21:22Z
dc.date.issued1993
dc.identifier.citationYunfeng Yin, “Quasilinearization for some nonlocal problems,” Journal of Applied Mathematics and Stochastic Analysis, vol. 6, no. 2, pp. 117-122, 1993. doi:10.1155/S1048953393000115en_US
dc.identifier.urihttp://hdl.handle.net/11141/1546
dc.description.abstractThe method of generalized quasilinearization [4] is applied to study semilinear parabolic equation ut – Lu = f{t,x,u) with nonlocal boundary conditions u(t,x)=∫Ωϕ(x,y)u(t,y)dy in this paper. The convexity of f in u is relaxed by requiring f(t,x,u) Muz to be convex for some M > 0. The quadratic convergence of monotone sequence is obtained.en_US
dc.language.isoen_USen_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.titleQuasilinearization for Some Nonlocal Problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/S1048953393000115


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0