Show simple item record

dc.contributor.advisorSahoo, Prasanta K.
dc.contributor.authorAnoman, Letchi Evrard Quentin
dc.date.accessioned2017-05-03T17:14:40Z
dc.date.available2017-05-03T17:14:40Z
dc.date.issued2017-04
dc.identifier.urihttp://hdl.handle.net/11141/1402
dc.descriptionThesis (M.S.) - Florida Institute of Technology, 2017en_US
dc.description.abstractMarine fouling on the hull of surface vessels is a topic of increasing importance in the maritime field for its environmental and financial impacts. Recent research developments have introduced mathematical models dealing with the frictional resistance associated with fouling, thus enabling to single out their impact on ship hydrodynamics. Herein, two implementations of these models are presented. The first implementation used Computational Fluid Dynamics to assess the additional drag induced by fouling for a specific ship model. With the software STAR CCM+, Reynolds Averaged Navier-Stokes equations have been used to model turbulence, wall laws parameters have been adapted to suit a Colebrook-type engineering roughness function, and a hybrid wall treatment captures the flow near the wall. Full details of the simulation set-up are given. The second implementation used turbulent flow similarity scaling laws in a MATLAB code to predict the added resistance of ships due to biofouling and the associated costs. With flexibility in mind, the code has been designed to account for the singularity of each context based on at least one in-situ observation of the fouling condition. Through a hypothetical, yet realistic scenario, it is shown that it enables proactive management by indicating when the cumulative penalty of fouling is no longer tolerable from a financial standpoint. The results of both implementations were validated against experimental data found in the literature. Prediction of the additional drag caused by fouling on a frigate showed excellent agreement of both methods.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.rightsCC BY-NC 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/legalcodeen_US
dc.titleAssessing the Hydrodynamic and Economic Impacts of Biofouling on the Hull of Surface Vessels Using Numerical Methodsen_US
dc.typeThesisen_US
dc.date.updated2017-05-01T18:35:16Z
thesis.degree.nameMaster of Science in Ocean Engineeringen_US
thesis.degree.levelMastersen_US
thesis.degree.disciplineOcean Engineeringen_US
thesis.degree.departmentOcean Engineering and Sciencesen_US
thesis.degree.grantorFlorida Institute of Technologyen_US
dc.type.materialtext


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC 4.0
Except where otherwise noted, this item's license is described as CC BY-NC 4.0