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Abstract:  This extended abstract presents a new scheme for qualitative reasoning with directions between 
points in 2D-space, called Star-ontology(6). The current results of our study on the complexity issues for 
reasoning with incomplete/disjunctive information using this new ontology has been outlined here. We 
have also proposed a generalized framework Star-ontology(α) for an integer α, that could be specialized to 
many ontologies including some of the known ones like the 2D-Cradinal ontology for α=4, and the 
currently studied one for α=6. This generalization also points to an interesting direction for investigation in 
the field of spatio-temporal reasoning.  
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1.  Introduction 
 

Starting from the early studies of simple point-based ontology in linear time, 
spatio-temporal constraint-based reasoning has matured into a discipline with its own 
agenda and methodology (Chittaro and Montanari, 2000). The study of an ontology starts 
with an underlying ‘space’ and develops a set of mutually/jointly exclusive and pair-wise 
disjoint (JEPD) ‘basic relations’ with respect to a reference object located in that space. 
Basic relations correspond to the equivalent regions in the space for the purpose of 
placing a second object there with respect to the first one. For example, a second point y 
can be at ‘East’ of a reference point x in the Cardinal-ontology (see the Figure 1 below), 
where the space is ‘zoned’ with respect to x. The underlying space and such a relative 
‘zoning’ scheme of the space with respect to a reference object - forms an ‘ontology’ in 
the context of spatio-temporal knowledge representation.  

 
Qualitative reasoning with an ontology involves a given set of objects and binary 

disjunctive relations (subset of the set of basic relations) between some of those objects. 
The satisfiability question in the reasoning problem is - whether the relations are 
consistent with respect to each other or not. The power set of the set of basic relations 
forms a closure with respect to the primary reasoning operators like composition, 
inversion, set union and set intersection, thus, forming an algebra. In the literature on this 
area, the term ‘algebra’ is more frequently used while referring to the concept of 
‘ontology’ as mentioned in the last paragraph. Thus, “reasoning in Cardnial-algebra” 
would often mean “reasoning in Cardinal ontology.” 
 

In the last few decades many such ontologies have been invented. In this work we 
have proposed a new one, called Star-ontology, for reasoning with qualitative angular 
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directions between point-objects in a two-dimensional space. Our main results presented 
here comprise of a study of the ontology and some complexity issues of doing reasoning 
in it. There are many real life situations where qualitative reasoning with the proposed 
Star-ontology is important. For example, consider a set of mobile agents who have 
imprecise (disjunctive) information regarding their relative angular directions with 
respect to each other and yet want to check if the information is consistent, and if so, 
want to locate their possible relative positions.  

 
We have also developed a generalized scheme (Star-ontolgy(α), for an integer α), 

for a class of similar ontologies. The generalization not only encompasses the new 
ontology that we are proposing here (for α=6), but also includes another one (2D-
Cardinal ontology) studied before (for α=4). The generalized scheme provides directions 
to many new and interesting other spatial ontologies for different values of α and further 
works on them.  

 
We will first introduce the 2D-Cardinal ontology of Ligozat (1998) in section 2, 

and then develop the new Star-ontology(6). Subsequently we will generalize them to the 
Star-ontology(α) in section 4, and then briefly conclude the paper. 
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Figure 1: 2D-Cardinal on
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as Cardinal-algebra. A one-dimensional version of this ontology is the simple point-based 
temporal-reasoning scheme (Vilain and Kautz, 1984) that is studied extensively within 
the spatio-temporal qualitative reasoning community. A higher dimensional version of 
the 2D-Cardinal ontology (n-D Cardinal algebra) has also been studied recently by 
Condotta et al (2001) and Mitra et al (2001).  
 
3.  Star-ontology for 60-degree division 
 

In this work we are proposing a new ontology in two-dimensional space. Instead 
of using the traditional Cartesian system (as in the 2D-Cardinal ontology) we are 
proposing an ontology with six lines fanning out from the reference point with sixty-
degree angle between any adjacent pair of lines, as shown in the Figure 2. As a 
convention, the first of such six lines (instead of four lines in the 2D-Cardinal ontology) 
is aligned to the positive X-axis (“East”) in a Cartesian space. This reference orientation 
of the underlying space has to be absolute.  

 
For the lack of any natural language terms, we will call the basic relations 

corresponding to these regions as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The relation  0  
is the standard ‘Equality’ with respect to the reference point. The odd numbered relations 
represent the six lines fanning out from the reference point and the even numbered 
relations correspond to the two-dimensional open conical regions in between the 
consecutive lines. The regions numbered higher than six are inverse of the respective 
regions numbered lower than six,  0  being inverse of itself. Thus, 7 is inverse of 1, 8 is 
inverse of 2, and so on. We will call this ontology as the Star-ontology(6). The reason 
behind the number 6 is to be explained later. The corresponding algebra with 2^13 
elements (disjunctive subsets of the set of basic elements) is called as the Star-algebra(6). 

 
The Table 1 is the composition table (CT) between these basic relations. Each row 

in the table corresponds to a basic relation (say, r) from the point y to the point x, while 
each column indicates the basic relation (say, l) from the point z to the point  y. Each 
entry in the table corresponds to the resulting relationship from z to x (r composed to l, or 
(r.l), where ‘.’ indicates the composition operation). They are computed by explicitly 
drawing such points in the 2D-space. For example, if a point y is at the region ‘2’ with 
respect to x, expressed as [y (2) x], and  [z (4) y] is also true, then z could be at any of the 
regions ‘2’, ‘3’, or ‘4’ with respect to (wrt) the point x, or [z (2, 3, 4) x]. ‘T’ indicates 
‘tautology’ (disjunction of all thirteen basic relations) in the table. The row and the 
column corresponding to the ‘Equality’ or the ‘0’ relation is omitted because: for any 
basic relation r,   r.0 = 0.r = r.  

 
The following properties can be observed from the table:  ∀ basic relations r and 

l,  
(1) r.r = r, 
(2) r.r∪ = r∪.r = either T, when r is a two-dimensional region, or (r, 0, r∪), when r is a 
one-dimensional region, with r∪ being the inverse of  r, 
(3) r.l = l.r (commutative), 



(4) r.l = inverse(r∪. l∪), where inverse of a set comprises of inverse of the elements in the 
original set. 
 

Not surprisingly, the above four properties are observed in the respective CT for 
the 2D-Cardinal ontology as well. These properties indicate very nicely behaved algebras 
in both the cases of Star-ontology(6) and the 2D-Cardinal ontology. These properties 
originate from the symmetry of the underlying space, which is not true in many other 
varieties of spatio-temporal ontology investigated so far by the community. 
 

Figure 4 provides a graphical representation G of the Star-ontology(6). The graph 
represents the basic relations as its nodes and their connectivity as arcs. Apart from the 
connectivity information, the regions indicated by the nodes in the graph have their own 
dimensionality. In the Figure 4 a dark node indicates a 1D-region (line) and an open 
circle indicates an open region of two-dimensions surrounded by a consecutive pair of 
such lines. Of course, the center is the ‘0’ region with the zero-dimension.  This is very 
similar to the lattice representation of Ligozat used for the purpose of studying the 
maximal tractable sub-algebras of the corresponding time-interval algebra (Ligozat, 
1996) or 2D-Cardinal algebra (Ligozat, 1998).  
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Figure 4: Graphical representat
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The power set of the basic relations is closed under these operations forming the Star-
algebra(6).  
 

 
Table 1: Composition table between basic relations in Star-ontology(6) 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 2 2,3,4 2,3,4 2,3,4, 
5,6 

1,0,71,0,7  1122,,1111
,,1100,,99,,

88  

1122,,1111
,,1100  

1122,,1111
,,1100  

1122  1122  

2 2 2 2 2,3,4 2,3,4 2,3,4, 
5,6 

22,,33,,44,,  
55,,66  

TT  22,,11,,11
22,,1111,,
1100  

22,,11,,11
22,,1111,,
1100  

22,,11,,11
22  

22,,11,,11
22  

3 2 2 3 4 4 4,5,6 44,,55,,66  44,,55,,66,,  
77,,88  

3,0,93,0,9  22,,11,,11
22,,1111,,
1100  

22,,11,,11
22  

22,,11,,11
22  

4 4,3,2 4,3,2 4 4 4 4,5,6 44,,55,,66  44,,55,,66,,  
77,,88  

44,,55,,66,,  
77,,88  

TT  44,,33,,22,,  
11,,1122  

44,,33,,22,,  
11,,1122  

5 4,3,2 4,3,2 4 4 5 6 66  66,,77,,88  66,,77,,88  66,,77,,88,,  
99,,1100  

5,0,15,0,1
11  

44,,33,,22,,  
11,,1122  

6 6,5,4, 
3,2 

6,5,4, 
3,2 

6,5,4 6,5,4 6 6 66  66,,77,,88  66,,77,,88  66,,77,,88,,  
99,,1100  

66,,77,,88,,  
99,,1100  

TT  

7 7,0,17,0,1  66,,55,,44,,  
33,,22  

66,,55,,44  66,,55,,44  66  66  7 8 8 8,9,1
0 

8,9,1
0 

8,9,1
0, 

11,12 
8 88,,99,,11

00,,  
1111,,1122  

TT  88,,77,,66,,  
55,,44  

88,,77,,66,,  
55,,44  

88,,77,,66  88,,77,,66  8 8 8 8,9,1
0 

8,9,1
0 

8,9,1
0, 

11,12 
9 1100,,1111

,,1122  
1100,,1111
,,1122,,11,,

22  

9,0,39,0,3  88,,77,,66,,  
55,,44  

88,,77,,66  88,,77,,66  8 8 9 10 10 10,11
,12 

10 1100,,1111
,,1122  

1100,,1111
,,  

1122,,11,,
22  

1100,,1111
,,1122,,11,,

22  

TT  1100,,99,,
88,,77,,66  

1100,,99,,
88,,77,,66  

10,9,
8 

10,9,
8 

10 10 10 10,11
,12 

11 1122  1122,,11,,
22  

1122,,11,,
22  

1122,,11,,
22,,33,,44  

11,0,11,0,
55  

1100,,99,,
88,,77,,66  

10,9,
8 

10,9,
8 

10 10 11 12 

12 1122  1122,,11,,
22  

1122,,11,,
22  

1122,,11,,
22,,33,,44  

1122,,11,,
22,,33,,44  

TT  12,11
,10,9,

8 

12,11
,10,9,

8 

12,11
,10 

12,11
,10 

12 12 

 
One of the important sub-sets of the full 2^13 elements Star-algebra(6) is the set 

of convex relations. Convex relations are the disjunctive set of basic relations that 
constitute a convex region in two-dimensions. Note that a region R is convex iff every 
point on a line - joining any two points  x  and  y (shortest path between x and y) lying 



within R - also lies within R. For example, regions (2, 3, 4) or (3, 0, 9) are convex 
relations, but (2, 4) or (2, 3, 4, 5, 6, 7, 8) are not. Note that the region (2, 3, 4) means a 
union of individual regions 2, 3 and 4. Obviously any convex relation must be comprised 
of contiguous basic relations in G, but the contiguous nature is not enough to guarantee 
the convexity. Also, every basic relation is a convex relation.  
 

Each of the convex relations may or may not include the relation 0 (equality) in it, 
however, if the region extends from a one-dimensional region to its inverse, both 
inclusive, then the relation 0 must be included in the set (for the later to be convex). For 
example, excluding 0 from the convex relation (0, 1, 2, 3, 4, 5, 6, 7) would make it non-
convex. However, (1, 2, 3, 4, 5, 6) is a convex relation, because it does not include 7, the 
inverse of 1. Also, (1, 0, 7) is a convex relation but (1, 7) is not. Thus, a convex relation 
may be expressed as [a – b, [0]], by a range of length from one through six (or seven, see 
next), from the relation a  through the relation  b in the graphical representation G (Fig. 
4) of the Star-ontology(6). It optionally includes 0, except the case when a and b are one-
dimensional relations inverse to each other (only case when the range is of length seven), 
then the relation 0 must be included. 

 
Preconvex subset (of the full 2^13 element set) is a superset of the convex subset 

such that some lower dimensional relations from the interval [a – b, [0]] are allowed to be 
absent. Thus, (2, 4, 5, 6) or (3, 9) are preconvex, but not convex relations. It could be 
easily shown that both the set of convex relations and the set of preconvex relations are 
closed under inverse, composition, and intersection operations, thus, forming the convex 
sub-algebra and preconvex sub-algebra of the Star-algebra(6).  

 
There are 156 convex relations (including null and tautology relations) and 508 

preconvex relations out of the total 2^13 elements in the Star-algebra(6). The notion of 
preconvexity is very useful in finding a maximal tractable sub-algebras in many 
ontologies, where 3-consistency (with polynomial algorithms) guarantees global 
consistency. Maximal tractable sub-algebra is a maximal subset within which doing 
reasoning is tractable (polynomially solvable).  Ligozat has developed the notions 
preconvexity for the purpose of identifying maximal tractable sub-algebra in the time-
interval ontology (Ligozat, 1996) and later for the 2D-Cardinal ontology (Ligozat, 1998). 
However, it may not work in the Star-ontology(6) as we will show below. (Note that a 
problem instance is 3-consistent iff every sub-problem with 3 points within the whole 
problem is consistent.) 
 
Example 1: The following is an example problem instance in Star-ontology(6) that has all 
convex relations, is 3-consistent, but not globally consistent. Consider four points (p, q, r, 
s) having relations: 
s (2, 3, 4, 5, 6) p,  s (6, 7, 8, 9, 10) q,   s (10, 11, 12, 1, 2) r, p (0) q (0) r. 
(Note the semantics of  [p (x, y) q] is that the point  p is at region  x  or y with respect to 
the point  q.) Take every triplet of points here (e.g., p, q, and s), they could be located in a 
space satisfying the corresponding relations from above, e.g., p=q=(0,0) and s=(-3,1) in a 
Cartesian coordinate system, such that [s (6) p], [s (6) q], and [p (0) q]. Hence, the 
relations are 3-consistent. However, s does not have any position in the space satisfying 



all the relations above, i.e., they do not have any globally consistent solution. In other 
words 3-consistency does not imply global consistency for even convex sub-algebra of 
the Star-algebra(6), contrary to the case of Star-algebra(4). End example. 
 

The problem here is that the basic relations could not be expressed as cross 
product of their corresponding projections on the two orthogonal co-ordinate axes as in 
those other two cases (canonical representation of the time-interval case, and the 2D-
Cardinal algebra case). Taking such projections was the primary methodology that 
Ligozat has deployed in proving many results in those two cases. The Star-ontology(6) 
has more similarity to the Cyclic-time ontology developed by Balbiani and Osmani 
(2001), where even a problem instance with only basic relations (no disjunction) may not 
be tractable (path-consistent but not globally consistent, like the above counter-example 
here). The following theorem proves the intractability of the Star-algebra(6). The proof 
uses similar technique as that of Ligozat (1998) for proving NP-hardness of the 2D-
Cardinal algebra, but avoids utilizing the projections on the two axes. 
 
Theorem 1: Reasoning with full Star-algebra(6) is NP-hard. 
 
Proof: Construction of a Star-ontology problem instance from an arbitrary 3-SAT 
problem instance with a set of 3-clauses {c1, c2, …, cm}, where each clause is ci = {li1, li2, 
li3} a disjunctive set of literals drawn from a finite set of Boolean variables. (1) For every 
literal lij (in the 3-SAT source problem), create two points Pij and Rij such that Pij [2 - 8] 
Rij, and (2) for every clause ci we have Pi1 [8 - 12] Ri2 and Pi2 [8 -12] Ri3 and Pi3 [8 -12] 
Ri1. Also, (3) for every literal lij in clause ci that has a complementary literal lgh in clause 
cg we have two relations between their corresponding points: Pij [6 -12] Rgh and Pgh [6 -
12] Rij. Note, a disjunctive relation between two points P and R,  P [a - b] R indicates [P 
(a, a+1, a+2, …, b) R], where a and b are basic relations of Star-ontology(6) in {0, 1, 2, 
…, 12}. 
We assign Pij [8] Rij whenever any literal lij is true. 
For any truth assignment that makes a clause false (with all literals in it being false) we 
cannot have the corresponding six points located in a two dimensional space satisfying 
the relations as in the first two set of constructions. On the other hand if any literal in a 
clause is true we can have assignments if and only if the corresponding complementary 
literals are false in other clauses. Thus, the constructed problem instance in the Star-
ontology(6) can have a solution if and only if there exists a satisfying truth assignment 
for the source 3-SAT problem instance.  
The construction is polynomial: six points per clause, six relations per clause from 
construction (1), three relations per clause from (2), and at the most three relations per 
pair of clauses from (3). Hence, the above construction is a polynomial transformation 
from 3-SAT problem to the Star-algebra(6) problem proving the later to be NP-hard. End 
proof.  
 
 
 
 
 



4.  Generalized Star-ontology 
 

The Star-ontology could be extended beyond six divisions along with 2*6+1=13 
basic relations. Consider dividing the space into eight regions instead of six in a similar 
angular fashion. The basic relations would be {0, 1, 2, …, 17}, where 0 indicates 
‘Equality’ with respect to the reference point, 1 indicates the ‘East,’ every odd-numbered 
relation corresponds to a semi-infinite line from the origin (the reference point), and the 
even-numbered relations indicate a conical space bounded between two such consecutive 
semi-infinite lines with (360/8) = 45-degree angle between them. One can easily 
generalize the concept to a Star-ontology(α), where α stands for any even integer 
indicating the number of divisions of the 2D-space. The set B of (2*α +1) basic relations 
is {0, 1, 2, 3, …, 2*α}, and the angle between each pair of consecutive lines is (360/α)-
degree. Ligozat’s (1998) 2D-Cardinal ontology is a special case of Star-ontology(α) with 
α=4 in this framework. It is self-evident now why the ontology proposed in the last few 
sections is called Star-ontology(6). 
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are not unique. For example, composition operation (2.4), between three 
and z, with [y (2) x], and [z (4) y], would result in both  [z (2, 3, 4) x], and  [z 
4, 5, 6) x], depending on where the point  y  is located in the supposedly 
egion '2' with respect to the point  x (Figures 5). A composition table CT can 
puted for this ontology. For these reasons, doing any reasoning in Star-
 with an odd integer value of α is logically impossible. This observation is 
 Star-ontology(α) where α is an odd integer. 

following formula expresses the inverse of any basic relation r ∈ B in the 
y(α) for an even integer α, where B is the set of basic relations:  r∪ = (r + α) 

Note that there are two types of basic relations in B depending on their 



dimensionality, other than the relation 0 that has zero dimensionality. We will refer them 
as re of even type corresponding to a 2D-region, and ro of odd type corresponding to a 
1D-region.  

 
The composition operation over the basic relations in B are done with the 

following formulas when the two operands are not inverse to each other. 
ro. ro = (ro - ro ); re. ro = [re - ro );  ro. re = (ro – re ]; re. re = [re – re ]; 
where ‘.’ indicates the operator, and the usual semantics parenthesis or bracket applies 
for an open (exclusive) or a closed (inclusive) interval respectively. The resulting ranges 
are the shortest intervals on the corresponding graphical representation of the basic 
relations G(α) (Figure 6)). When a basic relation is composed with its own inverse:  
either r.r∪ = r∪.r = T, when r is a two-dimensional region re,  or r.r∪ = r∪.r = (r, 0, r∪), 
when r is a one-dimensional region ro, with r∪ being the inverse of r. All other 
observations (r.r = r, r.l = l.r (commutative), and r.l = inverse(r∪. l∪)) made in the context 
of Star-ontology(6) also remain valid in the general case for any even α. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Graphical representation G(α) of  the Star-ontology(α) 
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The set of convex relations C in the generalized framework is defined 

accordingly: the set of disjunctive relations indicated by all the shortest ranges [r1 – r2, 
[0]] over the graphical representation G(α), such that r2 ≤ (r1 +  α) mod 2*α. When r2 < 
(r1 +  α) mod 2*α, then the relation 0 is optionally included (two relations: including 0 or 
without), but when r2 = (r1 +  α) mod 2*α, i.e., r2 is inverse of r1, then the relation 0 must 
be included. For all odd basic relations r, (r, 0, r∪) are also convex relations. The set of 
preconvex relations P is a superset of C such that a convex relation c without any number 
of lower dimensional regions in c is allowed to be in the set P.  
 



Most of the complexity results discussed in the previous sections will remain 
valid in the generalized Star-ontology(α). The following theorem states the NP-hardness 
of the reasoning problem in the generalized ontology. 
 
Theorem 2: Reasoning with full Star-algebra(α) is NP-hard. 
 
Proof sketch: Previous proof of the Theorem 1 for the case of α=6 can be trivially 
extended here. Construction of a Star-ontology problem instance from an arbitrary 3-SAT 
problem instance would be as follows. (1) For every literal lij (in the 3-SAT source 
problem), create two points Pij and Rij such that Pij [2 .. (α+2)] Rij, and (2) for every 
clause Ci we have Pi1 [(α+2) .. (2*α)] Ri2 and Pi2 [(α+2) .. (2*α)] Ri3 and Pi3 [(α+2) .. 
(2*α)] Ri1. Also, (3) for every literal lij that has a complementary literal lgh we have two 
relations between their corresponding points: Pij [α .. (2*α)] Rgh and Pgh Pij [α .. (2*α)] 
Rij. End Proof sketch. 
 

An interesting case is that of the Star-ontology(2) when α is 2. The five basic 
relations here could be semantically described as {Equality, Front, Above/Left, Back, 
Below/Right}. This ontology may find interesting applications. Studying the 
corresponding simple algebra would be a future direction to our work.  Star-ontolgy(0) 
with two basic relations {Equality, Non-equality} is also of some theoretical interest for a 
broad study of the spatio-temporal reasoning.  
 
 We know that the preconvex sub-algebra in Star-ontology(4) or 2D-Cardinal 
ontology is a maximal-tractable algebra (Ligozat, 1998) and 3-consistency implies global 
consistency for the preconvex set. As mentioned in a previous section, 3-consistency does 
not imply global-consistency in the Star-ontology(6). The counter example presented 
before (Example 1) can be easily extended to show that the result is generalizable to the 
Star-ontology(α). However, we can assert, 
 
Assertion 3: 4-consistency is necessary and sufficient to imply global consistency for the 
preconvex subset P  in the Star-ontology(α). 
 

Note that a problem instance is k-consistent iff every sub-problem with k objects 
within the whole problem is consistent. 
 

The proof of the above assertion could be developed by using an extension of the 
Helly’s theorem for convex sets as stated in Chvátal (1983, Theorem 17.2): “Let F be a 
finite family of at least n+1 convex sets in Rn such that every n+1 sets in F have a point in 
common. Then all the sets in F have a point in common.” One could define a 
corresponding notion of a pre-convex set, where some strictly-lower dimensional convex 
subsets may be absent from a convex set. Thus, a circle is a convex region in the 2D-
space. However, exclude a straight line (a convex region in a lower dimension) over the 
circle from the circle – it (circle minus the line) becomes a pre-convex region, and does 
not remain a convex region.  Helly’s theorem could be easily extended toward the pre-
convex sets from the convex sets. Using such an extended Helly’s theorem one can prove 
the Assertion 3 by induction.  



 
Proof sketch of Assertion 3 (sufficiency): Induction base case for four points is trivially 
true by the definition of 4-consistency. Induction hypothesis is that the assertion is true 
for (m-1) points, and hence all the (m-1) points have satisfiable placements in the space. 
Consider a new m-th point with respect to which we have n preconvex relations from the 
other (m-1) older points. By 4-consistency assumption we know that the three regions wrt 
every three old points have a non-null intersection. By extended Helly’s theorem, that 
would imply the existence of a non-null region for the new m-th point. Hence, the 
placements to all old (m-1) points is extendable to a non-null region for the placement of 
the new m-th point, or the global consistency is implied. End proof sketch.  
 

The necessity part of the assertion is trivial, from the counter example that 
without 4-consistency we cannot have a global consistency. 
 
5.  Conclusion 
 

In this extended abstract we have proposed a new ontology named Star-
ontology(6) for reasoning with angular directions in two-dimensional space. We have 
discussed complexity issues in reasoning with this ontology and proposed a generalized 
framework for the Star-ontology(α) that includes the former ontology for α=6. It also 
encompasses the previously studied 2D-Cardinal ontology that would be Star-
ontology(4). Some interesting other ontologies that could be developed out of such a 
generalized framework (for different values of α) are also being suggested here. We have 
also deployed a new methodology for studying the complexity issues that completely 
avoids using projections on co-ordinate axes, which used to be the standard methodology 
before for such studies. We believe that our technique has much broader implications 
than what is being achieved in this work.  
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