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This paper discusses a generalized time-varying SEIR propagation disease model subject to
delays which potentially involves mixed regular and impulsive vaccination rules. The model
takes also into account the natural population growing and the mortality associated to the
disease, and the potential presence of disease endemic thresholds for both the infected and
infectious population dynamics as well as the lost of immunity of newborns. The presence of
outsider infectious is also considered. It is assumed that there is a finite number of time-varying
distributed delays in the susceptible-infected coupling dynamics influencing the susceptible and
infected differential equations. It is also assumed that there are time-varying point delays for
the susceptible-infected coupled dynamics influencing the infected, infectious, and removed-by-
immunity differential equations. The proposed regular vaccination control objective is the tracking
of a prescribed suited infectious trajectory for a set of given initial conditions. The impulsive
vaccination can be used to improve discrepancies between the SEIR model and its suitable
reference one.
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1. Introduction

Important control problems nowadays related to Life Sciences are the control of ecological
models like, for instance, those of population evolution (Beverton-Holt model, Hassell
model, Ricker model, etc. [1–5]) via the online adjustment of the species environment
carrying capacity, that of the population growth or that of the regulated harvesting quota
as well as the disease propagation via vaccination control. In a set of papers, several
variants and generalizations of the Beverton-Holt model (standard time-invariant, time-
varying parameterized, generalized model, or modified generalized model) have been
investigated at the levels of stability, cycle-oscillatory behavior, permanence, and control
through the manipulation of the carrying capacity (see, e.g., [1–5]). The design of related
control actions has been proved to be important in those papers at the levels, for instance, of
aquaculture exploitation or plague fighting. On the other hand, the literature about epidemic
mathematical models is exhaustive in many books and papers. A nonexhaustive list of
references is given in this manuscript compare [6–14] (see also the references listed therein).
The sets of models include the following most basic ones [6, 7]:

(i) SI-models where not removed-by-immunity population is assumed. In other
words, only susceptible and infected populations are assumed,

(ii) SIR-models, which include susceptible, infected, and removed-by-immunity popu-
lations,

(iii) SEIR models where the infected populations are split into two ones (namely,
the “infected” which incubate the disease but do not still have any disease
symptoms and the “infectious” or “infective” which do exhibit the external disease
symptoms).

The three above models have two possible major variants, namely, the so-called “pseudo-
mass action models,” where the total population is not taken into account as a relevant
disease contagious factor or disease transmission power, and the so-called “true mass action
models,” where the total population is more realistically considered as being an inverse factor
of the disease transmission rates. There are other many variants of the above models, for
instance, including vaccination of different kinds: constant [8], impulsive [12], discrete-time,
and so forth, by incorporating point or distributed delays [12, 13], oscillatory behaviors [14],
and so forth. On the other hand, variants of such models become considerably simpler for
the disease transmission among plants [6, 7]. In this paper, a mixed regular continuous-
time/impulsive vaccination control strategy is proposed for a generalized time-varying SEIR
epidemic model which is subject to point and distributed time-varying delays [12, 13, 15–
17]. The model takes also into account the natural population growing and the mortality
associated to the disease as well as the lost of immunity of newborns, [6, 7, 18] plus
the potential presence of infectious outsiders which increases the total infectious numbers
of the environment under study. The parameters are not assumed to be constant but
being defined by piecewise continuous real functions, the transmission coefficient included
[19]. Another novelty of the proposed generalized SEIR model is the potential presence
of unparameterized disease thresholds for both the infected and infectious populations.
It is assumed that a finite number of time-varying distributed delays might exist in the
susceptible-infected coupling dynamics influencing the susceptible and infected differential
equations. It is also assumed that there are potential time-varying point delays for the
susceptible-infected coupled dynamics influencing the infected, infectious, and removed-
by-immunity differential equations [20–22]. The proposed regulation vaccination control
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objective is the tracking of a prescribed suited infectious trajectory for a set of given initial
conditions. The impulsive vaccination action can be used for correction of the possible
discrepancies between the solutions of the SEIR model and that of its reference one due,
for instance, to parameterization errors. It is assumed that the total population as well as the
infectious one can be directly known by inspecting the day-to-day disease effects by directly
taking the required data. Those data are injected to the vaccination rules. Other techniques
could be implemented to evaluate the remaining populations. For instance, the infectious
population is close to the previously infected one affected with some delay related to the
incubation period. Also, either the use of the disease statistical data related to the percentages
of each of the populations or the use of observers could be incorporated to the scheme to have
either approximate estimations or very adjusted asymptotic estimations of each of the partial
populations.

1.1. List of Main Symbols

SEIR epidemic model, namely, that consisting of four partial populations related to the
disease being the susceptible, infected, infectious, and immune.

S(t): Susceptible population, that is, those who can be infected by the disease

E(t): Infected population, that is, those who are infected but do not still have
external symptoms

I(t): Infectious population, that is, those who are infected exhibiting external
symptoms

R(t): Immune population

N(t): Total population

η(t): Function associated with the infected floating outsiders in the SEIR model

β(t): Disease transmission function

λ(t): Natural growth rate function of the population

μ(t): Natural rate function of deaths from causes unrelated to the infection

ν(t): Takes into account the potential immediate vaccination of new borns

σ(t), γ(t): Functions that σ−1(t) and γ−1(t) are, respectively, the instantaneous
durations per populations averages of the latent and infectious periods at
time t

ω(t): the rate of lost of immunity function

ρ(t): related to the mortality caused by the disease

uE(t), uI(t): Thresholds of infected and infectious populations

hi(t), hE(t), hI(t), hVi(t), h
′
Vi
(t): Different point and impulsive delays in the epidemic

model

V (t), Vθ(t): Functions associated with the regular and impulsive vaccination
strategies

fi(τ, t), fV i(τ, t): Weighting functions associated with distributed delays in the SEIR
model.
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2. Generalized True Mass Action SEIR Model with
Real and Distributed Delays and Combined Regular and
Impulsive Vaccination

Let S(t) be the “susceptible” population of infection at time t, E(t) the “infected” (i.e., those
which incubate the illness but do not still have any symptoms) at time t, I(t) the “infectious”
(or “infective”) population at time t, and R(t) the “removed-by-immunity” (or “immune”)
population at time t. Consider the extended SEIR-type epidemic model of true mass type

Ṡ(t) = λ(t) − μ(t)S(t) +ω(t)R(t) − β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)

+ν(t)N(t)

(
1−

q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)V (t)dτ

)
−ν(t)g(t)Vθ(t)S(t)

( ∑
ti∈IMP

δ(t − ti)

)
+η(t),

(2.1)

Ė(t) =
β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)

− β(t − hE(t))kE(t − hE(t))
N(t − hE(t))

S(t − hE(t))I(t − hE(t)) −
(
μ(t) + σ(t)

)
E(t) + uE(t) − η(t),

(2.2)

İ(t) = −(μ(t) + γ(t)
)
I(t) + σ(t)E(t) +

β(t − hE(t))kE(t − hE(t))
N(t − hE(t))

× S(t − hE(t))I(t − hE(t))

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))

× I(t − hE(t) − hI(t)) − uE(t) + uI(t),

(2.3)

Ṙ(t) = −(μ(t) +ω(t)
)
R(t) + γ(t)

(
1 − ρ(t)

)
I(t)

+ ν(t)N(t)

(
q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)V (t)dτ

)

+
β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))

N(t − hE(t) − hI(t))

× S(t − hE(t) − hI(t))I(t − hE(t) − hI(t)) − uI(t)

+ ν(t)g(t)Vθ(t)S(t)

( ∑
ti∈IMP

δ(t − ti)

)
,

(2.4)

η(t) = β(t)
S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)

(
I(t − τ) − I(t − τ)

)
dτ

)
≤ 0, (2.5)
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for all t ∈ R0+ subject to initial conditions S(t) = ϕS(t), E(t) = ϕE(t), I(t) = ϕI(t), and
R(t) = ϕR(t), for all t ∈ [−h, 0] with ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+ which are absolutely
continuous functions with eventual bounded discontinuities on a subset of zero measure of
their definition domain and

h := sup
t∈R0+

h(t); h(t) := sup
0≤τ≤t

max
i∈p;j∈q

(
hi(τ), hE(τ) + hI(τ), hV j(τ) + h′

V j(τ)
)
; ∀t ∈ R0+ (2.6)

is the maximum delay at time t of the SEIR model (2.1)–(2.4) subject to (2.5) under
a potentially jointly regular vaccination action V : R0+ → R0+ and an impulsive
vaccination action ν(t)g(t)Vθ(t)S(t)(

∑
ti∈IMP δ(t − ti)) at a strictly ordered finite or infinite

real sequence of time instants IMP := {ti ∈ R0+}i∈ZI⊂Z+
, with g, Vθ : R0+ → R0+

being bounded and piece-wise continuous real functions used to build the impul-
sive vaccination term and ZI being the indexing set of the impulsive time instants.
It is assumed

lim
t→+∞

(t − hi(t)) = +∞, ∀ i ∈ p, lim
t→+∞

(t − hE(t) − hI(t)) = +∞, (2.7)

and limt→+∞(t − hV i(τ) − h′
V i(τ)) = +∞, for all i ∈ q which give sense of the asymptotic limit

of the trajectory solutions.
The real function η(t) in (2.5) is a perturbation in the susceptible dynamics (see, e.g.,

[18]) where function I : R0+ ∪ [−h, 0) → R0+, subject to the point wise constraint I(t) ≥
I(t), for all t ∈ R0+ ∪ [−h, 0), takes into account the possible decreasing in the susceptible
populationwhile increasing the infective one due to a fluctuant external infectious population
entering the investigated habitat and contributing partly to the disease spread. In the above
SEIR model,

(i) N(t) := S(t) + E(t) + I(t) + R(t) is the total population at time t.

The following functions parameterize the SEIR model.

(i) λ : R0+ → R is a bounded piecewise-continuous function related to the
natural growth rate of the population. λ(t) is assumed to be zero if the total
population at time t is less tan unity, that is, N(t) < 1, implying that it becomes
extinguished.

(ii) μ : R0+ → R+ is a bounded piecewise-continuous function meaning the natural
rate of deaths from causes unrelated to the infection.

(iii) ν : R0+ → R+ is a bounded piecewise-continuous function which takes into account
the immediate vaccination of new borns at a rate (ν(t) − μ(t)).

(iv) ρ : R0+ → [0, 1] is a bounded piecewise-continuous function which takes into
account the number of deaths due to the infection.

(v) ω : R0+ → R0+ is a bounded piecewise-continuous function meaning the rate of
losing immunity.

(vi) β : R0+ → R+ is a bounded piecewise-continuous transmission function with the
total number of infections per unity of time at time t.
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(vii) β(t)(S(t)/N(t))(
∑p

i=1

∫hi(t)
0 fi(τ, t)I(t − τ)dτ) is a transmission term accounting for

the total rate at which susceptible become exposed to illness which replaces
(β/N(t))S(t)I(t) in the standard SEIR model in (2.1)–(2.2) which has a con-
stant transmission constant β. It generalizes the one-delay distributed approach
proposed in [20] for a SIRS-model with distributed delays, while it describes a
transmission process weighted through a weighting function with a finite number
of terms over previous time intervals to describe the process of removing the
susceptible as proportional to the infectious. The functions fi : Rhi(t)×R0+ → [0, 1],
with Rhi(t) := [0, hi(t)], t ∈ R0+, for all i ∈ p := {1, 2, . . . , p} are p nonnegative
weighting real functions being everywhere continuous on their definition domains
subject to Assumption 1(1) below, and hi : R0+ → R0+, for all i ∈ p are the
p relevant delay functions describing the delay distributed-type for this part of
the SEIR model. Note that a punctual delay can be modeled with a Dirac-delta
distribution δ(t) within some of the integrals and the absence of delays is modeled
with all the hi : R0+ → R0+ functions being identically zero.

(viii) σ, γ : R0+ → R+ are bounded continuous functions defined so that σ−1(t) and γ−1(t)
are, respectively, the instantaneous durations per populations averages of the latent
and infective periods at time t.

(ix) uE, uI : R0+ → R0+ are piecewise-continuous functions being integrable on any
subset of R0+ which are threshold functions for the infected and the infectious
growing rates, respectively, which take into account (if they are not identically zero)
the respective endemic populations which cannot be removed. This is a common
situation for some diseases like, for instance, malaria, dengue, or cholera in certain
regions where they are endemic.

(x) The two following coupling infected-infectious dynamics contributions:

β(t − hE(t))kE(t − hE(t))
N(t − hE(t))

S(t − hE(t))I(t − hE(t)),

β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

(2.8)

are single point-delay and two-point delay dynamic terms linked, respectively,
to the couplings of dynamics between infected-versus-infectious populations
and infectious-versus-immune populations, which take into account a single-
delay effect and a double-delay effect approximating the real mutual one-stage
and two-staged delayed influence between the corresponding dynamics, where
kE, kI , hE, hI : R0+ → R+ are the gain and their associate infected and infectious
delay functions which are everywhere continuous in R0+. In the time-invariant
version of a simplified pseudomass-type SIRS-model proposed in [21], the constant
gains are kE = e−μhE and kI = e−γhI e−(hE+hI).

(xi) fV i : [t − hV i(t), t] × R0+ → [0, 1], for all i ∈ q in (2.1) and (2.4) are q
nonnegative nonidentically zero vaccination weighting real functions everywhere
on their definition domains subject to distributed delays governed by the functions
hV i, h

′
V i : R0+ → R0+, for all i ∈ q where V : [−hV , 0) ∪ R0+ → [0, 1],
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with hV := sup0≤t<∞ maxi∈p(t − hV i(t) − h′
V i(t)) is a vaccination function to be appro-

priately normalized to the day-to-day population to be vaccinated subject to V (t) =
0, for all t ∈ R−. As for the case of the transmission term, punctual delays could be
included by using appropriate Dirac deltas within the corresponding integrals.

(xii) The SEIRmodel is subject to a joint regular vaccination action V : R0+ → R+ plus an
impulsive one ν(t)g(t)Vθ(t)S(t)(

∑
ti∈IMP δ(t−ti)) at a strictly ordered finite or count-

able infinite real sequence of time instants{ti ∈ R0+}i∈ZI⊂Z+
. Specifically, it is a single

Dirac impulse of amplitude ν(t)g(t)Vθ(t)S(t) if t = ti ∈ IMP and zero if t /∈ IMP. The
weighting function g : R0+ → R0+ can be defined in several ways. For instance, if
g(t) = N(t)/S(t)when S(t)/= 0, and g(t) = 0, otherwise, then g(t)Vθ(t)S(t)δ(t− ti) =
Vθ(t)N(t)δ(t − ti) when S(t)/= 0 and it is zero, otherwise. Thus, the impulsive
vaccination is proportional to the total population at time instants in the sequence
{ti}i∈ZI

. If g(t) = 1, then the impulsive vaccination is proportional to the susceptible
at such time instants. The vaccination term g(t)Vθ(t)S(t)(

∑
ti∈IMP δ(t − ti)) in (2.1)

and (2.4) is related to a instantaneous (i.e., pulse-type) vaccination applied in
particular time instants belonging to the real sequence {ti}i∈ZI

if a reinforcement of
the regular vaccination is required at certain time instants, because, for instance, the
number of infectious exceeds a prescribed threshold. Pulse control is an important
tool in controlling certain dynamical systems [15, 23, 24] and, in particular,
ecological systems, [4, 5, 25]. Pulse vaccination has gained in prominence as a result
of its highly successfully application in the control of poliomyelitis andmeasles and
in a combined measles and rubella vaccine. Note that if ν(t) = μ(t), then neither the
natural increase of the population nor the loss of maternal lost of immunity of the
newborns is taken into account. If ν(t) > μ(t), then some of the newborns are not
vaccinated with the consequent increase of the susceptible population compared to
the case ν(t) = μ(t). If ν(t) < μ(t), then such a lost of immunity is partly removed
by vaccinating at birth a proportion of newborns.

Assumption 1. (1)
∑p

i=1

∫hi(t)
0 fi(τ, t)dτ = 1;

∑p

i=1

∫hi(t)
0 τfi(τ, t)dτ < +∞, for all t ∈ R0+.

(2) There exist continuous functions ûE : R0+ → R0+, ûI : R0+ → R0+ with ûE(0) =
ûI(0) = 0 such that 0 ≤ ∫ t+T

t uE(τ)dτ ≤ ûE(T) ≤ uE < +∞; 0 ≤ ∫ t+T
t uI(τ)dτ ≤ ûI(T) ≤ uI < +∞

for some prefixed T ∈ R0+ and any given t ∈ R0+.

Assumption 1(1) for the distributed delay weighting functions is proposed in [20].
Assumption 1(2) implies that the infected and infectious minimum thresholds, affecting to
the infected, infectious, and removed-by-immunity time derivatives, may be negative on
certain intervals but their time-integrals on each interval on some fixed nonzero measure is
nonnegative and bounded. This ensures that the infected and infectious threshold minimum
contributions to their respective populations are always nonnegative for all time. From
Picard-Lindelöff theorem, it exists a unique solution of (2.1)–(2.5) on R+ for each set of
admissible initial conditions ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+ and each set of vaccination
impulses which is continuous and time-differentiable on (

⋃
ti∈IMP(ti, ti+1)) ∪ (R0+ \ [0, t))

for time instant t ∈ IMP, provided that it exists, being such that (t,∞) ∩ IMP = ∅, or
on (

⋃
ti∈IMP(ti, ti+1)), if such a finite impulsive time instant t does not exist, that is, if the

impulsive vaccination does not end in finite time. The solution of the generalized SEIR
model for a given set of admissible functions of initial conditions is made explicit in
Appendix A.
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3. Positivity and Boundedness of the Total Population
Irrespective of the Vaccination Law

In this section, the positivity of the solutions and their boundedness for all time under
bounded non negative initial conditions are discussed. Summing up both sides on (2.1)–(2.4)
yields directly

Ṅ(t) =
(
ν(t) − μ(t)

)
N(t) + λ(t) − γ(t)ρ(t)I(t); ∀t ∈ R0+, (3.1)

The unique solution of the above scalar equation for any given initial conditions obeys the
formula

N(t) = Ψ(t, 0)N(0) +
∫ t

0
Ψ(t, τ)u(τ)dτ = Ψ(t, 0)N(0) +

∫ t

0
Ψ(τ, 0)u(t − τ)dτ ; ∀t ∈ R0+,

(3.2)

where Ψ(t, t0) = e
∫ t
t0
(ν(τ)−μ(τ))dτ is the mild evolution operator which satisfies Ψ̇(t, t0) = (ν(t) −

μ(t))Ψ(t, t0), ∀t ∈ R0+ and u(t) = λ(t) − γ(t)ρ(t)I(t) is the forcing function in (3.1). This yields
the following unique solution for (3.1) for given bounded initial conditions:

N(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′) )dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ)
)
dτ ; ∀t ∈ R0+. (3.3)

Consider a Lyapunov function candidate W(t) = N2(t), for all t ∈ R0+ whose time-
derivative becomes

Ẇ(t)
2

= N(t)Ṅ(t) = N(t)
[(
λ(t) +

(
ν(t) − μ(t)

)
N(t) − γ(t)ρ(t)I(t)

)]
=

(
ν(t) − μ(t)

)
W(t) +

(
λ(t) − γ(t)ρ(t)I(t)

)
W1/2(t); ∀t ∈ R0+,

(3.4)

Note that W(0) = N2(0) > 0, and

Ẇ(0)
2

= N(0)
[(
λ(0) +

(
ν(0) − μ(0)

)
N(0) − γ(0)ρ(0)I(0)

)]
=

(
ν(0) − μ(0)

)
W(0) +

(
λ(0) − γ(0)ρ(0)I(0)

)
W1/2(0)/= 0,

(3.5)

if I(0)/= (λ(0) + (ν(0) − μ(0))N(0))/γ(0)ρ(0).
Decompose uniquely any nonnegative real interval [0, t) as the following disjoint union of
subintervals

[0, t) :=

(
θt⋃
i=1

Ji

)
, ∀t ∈ R+, (3.6)
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where Ji := [Ti, Ti+1) and Jθt := [Tθt , t) are all numerable and of nonzero Lebesgue measure
with the finite or infinite real sequence ST := {Ti}i∈Z0+

of all the time instants where the time
derivative of the above candidateW(t) changes its sign which are defined by construction so
that the above disjoint union decomposition of the real interval [0, t) is feasible for any real
t ∈ R+, that is, if it consists of at least one element), as

T0=0; Ti+1 := min
(
t ∈ R+ : (T >Ti)∧

(
sgn Ẇ(T) =− sgn Ẇ(Ti); ∀Ti ∈ ST

))
; ∀i(≤ θ) ∈ Z+

θ := {i ∈ Z+ : Ti ∈ ST} ∈ Z+; θt := {i ∈ Z+ : ST � Ti ≤ t} ⊂ Z+; ∀t ∈ R+.

(3.7)

Note that the identity of cardinals of sets card θ = card ST holds since θ is the indexing set of
ST and, furthermore,

(a) the sequence ST trivially exists if and only if I(0)/= (λ(0) + (ν(0) − μ(0))N(0))/
γ(0)ρ(0). Then, [0, t) = (

⋃
i∈θ+t Ji) ∪ (

⋃
i∈θ−t Ji), for all t ∈ R+ with at least one of

the real interval unions being nonempty, θ+
t , θ

−
t ⊂ Z0+ are disjoint subsets of θt

satisfying,

1 ≤ max card
(
θ+
t , θ

−
t

) ≤ card θt, (3.8)

and defined as follows:

(i) for any given ST � Ti ≤ t, i ∈ θ+
t if and only if Ẇ(Ti) > 0,

(ii) for any given ST � Ti ≤ t, i ∈ θ−
t if and only if Ẇ(Ti) < 0, and define also

θ+ :=
⋃

t∈R0+
θ+
t , θ

− :=
⋃

t∈R0+
θ−
t ,

(b) 1 ≤ card θt ≤ card θ ≤ ∞, for all t ∈ R+, where unit cardinal means that the time-
derivative of the candidate W(t) has no change of sign and infinite cardinal means
that there exist infinitely many changes of sign in Ẇ(t),

(c) card θt ≤ card θ < ∞ if it exists a finite t∗ ∈ R+ such that Ẇ(t∗)Ẇ(t∗ + τ) >
0, for all τ ∈ R0+, and then, the sequence ST is finite (i.e., the total number of
changes of sign of the time derivative of the candidate is finite) as they are the
sets θ+

t , θ
−
t , θ

+, θ−,

(d) card θ = ∞ if there is no finite t∗ ∈ R+ such that Ẇ(t∗)Ẇ(t∗ + τ) > 0, for all τ ∈
R0+, for all t ∈ R+ and, then, the sequence ST is infinite and the set θ+ ∪ θ− has
infinite cardinal.

It turns out that

W(t)
2

=
W(0)
2

+
∫ t

0

((
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

)
dτ

=
W(0)
2

+
∑
i∈θ+t

∫Ti+1

Ti

((
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

)
dτ

−
∑
i∈θ−t

∣∣∣∣∣
∫Ti+1

Ti

(
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

∣∣∣∣∣dτ ; ∀t ∈ R0+.

(3.9)
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The following result is obtained from the above discussion under conditions which guarantee
that the candidate W(t) is bounded for all time.

Theorem 3.1. The total population N(t) of the SEIR model is nonnegative and bounded for all time
irrespective of the vaccination law if and only if

0 ≤
∑
i∈θ+t

∫Ti+1

Ti

((
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

)
dτ

−
∑
i∈θ−t

∫Ti+1

Ti

∣∣∣(ν(τ) − μ(τ)
)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

∣∣∣dτ < +∞; ∀t ∈ R+.

(3.10)

Remark 3.2. Note that Theorem 3.1 may be validated since both the total population used in
the construction of the candidate W(t) and the infectious one (exhibiting explicit disease
symptoms) can be either known or tightly estimated by direct inspection of the disease
evolution data. Theorem 3.1 gives the most general condition of boundedness through time
of the total population. It is allowed for Ṅ(t) to change through time provided that the
intervals of positive derivative are compensated with sufficiently large time intervals of
negative time derivative. Of course, there are simpler sufficiency-type conditions of fulfilment
of Theorem 3.1 as now discussed. Assume that N(t) → +∞ as t → +∞ and I(t) ≥
0, for all t ∈ R0+. Thus, from (3.4):

Ẇ(t)
2

= N(t)Ṅ(t) =
[(
ν(t) − μ(t)

)
N(t) + λ(t)

]
N(t) − γ(t)ρ(t)I(t)N(t)

≤ [(
ν(t) − μ(t)

)
N(t) + λ(t)

]
N(t)

(3.11)

leads to lim supt→+ ∞Ẇ(t) = − ∞ < 0 if lim supt→+ ∞(ν(t) − μ(t)) < 0, irrespective of λ(t)
since λ : R0+ → R is bounded, so that W(t) and then N(t) cannot diverge what leads
to a contradiction. Thus, a sufficient condition for Theorem 3.1 to hold, under the ultimate
boundedness property, is that lim supt→+∞(ν(t)−μ(t)) < 0 if the infectious population is non
negative through time. Another less tighter bound of the above expression for N(t) → +∞
is bounded by taking into account that N2(t)(> N(t)) → +∞ as t → +∞ since N2(t) = N(t)
if and only if N(t) = 1. Then,

Ẇ(t)
2

≤ [
ν(t) − μ(t) + λ(t)

]
N2(t), (3.12)

what leads to lim supt→+∞Ẇ(t) = −∞ < 0 if lim supt→+∞(ν(t) − μ(t) + λ(t)) < 0 which again
contradicts that N(t) → +∞ as t → +∞ and it is a weaker condition than the above one.

Note that the above condition is much more restrictive in general than that of
Theorem 3.1 although easier to test.
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Since the impulsive-free SEIR model (2.1)–(2.5) has a unique mild solution (then
being necessarily continuous) on R0+, it is bounded for all finite time so that Theorem 3.1
is guaranteed under an equivalent simpler condition as follows.

Corollary 3.3. Theorem 3.1 holds if and only if

0 ≤
∑
i∈θ+

∫Ti+1

Ti

((
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

)
dτ

−
∑
i∈θ−

∫Ti+1

Ti

∣∣∣(ν(τ) − μ(τ)
)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

∣∣∣dτ < +∞,

(3.13)

and, equivalently,

lim sup
t→+∞

⎛
⎝∑

i∈θ+t

∫Ti+1

Ti

((
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

)
dτ

−
∑
i∈θ−t

∫Ti+1

Ti

∣∣∣(ν(τ) − μ(τ)
)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

∣∣∣dτ
⎞
⎠ < +∞,

lim inf
t→+∞

⎛
⎝∑

i∈θ+t

∫Ti+1

Ti

((
ν(τ) − μ(τ)

)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

)
dτ

−
∑
i∈θ−t

∫Ti+1

Ti

∣∣∣(ν(τ) − μ(τ)
)
W(τ) +

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
W1/2(τ)

∣∣∣dτ
⎞
⎠ ≥ 0.

(3.14)

Corollary 3.3 may also be simplified to the light of more restrictive alternative and
dependent on the parameters conditions which are easier to test, as it has been made in
Theorem 3.1. The following result, which is weaker than Theorem 3.1, holds.

Theorem 3.4. Assume that

(1) there exists ρ0 ∈ R+ such that
∫ t
0(ν(τ) − μ(τ))dτ ≤ −ρ0t,

(2) and

∫ t

0

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)2
dτ ≤ Ke−2εt, (3.15)

for some constants K, ρ, ε ∈ R+, for all t(≥ tα) ∈ R0+ and some prefixed finite tα ∈ R0+.
Then, the total population N(t) of the SEIR model is nonnegative and bounded for all
time, and asymptotically extinguishes at exponential rate irrespective of the vaccination
law.
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If the second condition is changed to

∫ t

0

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)2
dτ ≤ K; ∀t(≥ tα) ∈ R0+, (3.16)

then the total population N(t) of the SEIR model is nonnegative and bounded for all time.

The proof of Theorem 3.4 is given in Appendix B. The proofs of the remaining results
which follow requiring mathematical proofs are also given in Appendix B. Note that the
extinction condition of Theorem 3.4 is associated with a sufficiently small natural growth rate
compared to the infection propagation in the case that the average immediate vaccination of
new borns (of instantaneous rate(ν(t) − μ(t))) is less than zero. Another stability result based
on Gronwall’s Lemma follows.

Theorem 3.5. Assume that ρ0 ∈ R+ exists such that

∫ t

0

(
μ(τ) − ν(τ)

)
dτ ≥ ρ0t ≥

∫ t

0

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
dτ ; ∀t(≥ tα) ∈ R0+, (3.17)

for some prefixed finite tα ∈ R0+. Then, the total population N(t) of the SEIR model is nonnegative
and bounded for all time irrespective of the vaccination law. Furthermore,N(t) converges to zero at an
exponential rate if the above second inequality is strict within some subinterval of [tα,∞) of infinite
Lebesgue measure.

Remark 3.6. Condition (3.17) for Theorem 3.5 can be fulfilled in a very restrictive, but easily
testable fashion, by fulfilling the comparisons for the integrands for all time for the following
constraints on the parametrical functions:

μ(t) = ν(t) + ρ0 > ν(t) + λ(t) ≥ ν(t); ∀t ∈ R0+, (3.18)

which is achievable, irrespective of the infectious population evolution provided that λ(t) ≤
ρ0, for all t ∈ R0+, by vaccinating a proportion of newborns at birth what tends to decrease
the susceptible population by this action compared to the typical constraint μ(t) = ν(t). See
Remark 3.2 concerning a sufficient condition for Theorem 3.1 to hold. Another sufficiency-
type condition, alternative to (3.17), to fulfil Theorem 3.5, which involves the infectious
population is

I(t) ≥ λ(t) − ρ0
γ(t)ρ(t)

if I(t) > 0, λ(t) > ρ0, γ(t)ρ(t) > 0; λ(t) ≤ ρ0 if γ(t)ρ(t)I(t) = 0. (3.19)

Note that the infectious population is usually known with a good approximation (see
Remark 3.2).
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4. Positivity of the SEIR Generalized
Model (2.1)–(2.5)

The vaccination effort depends on the total population and has two parts, the continuous-
time one and the impulsive one (see (2.1) and (2.4)).

4.1. Positivity of the Susceptible Population of
the Generalized SEIR Model

The total infected plus infectious plus removed-by-immunity populations obeys the
differential equation

Ė(t) + İ(t) + Ṙ(t) = −μ(t)(E(t) + I(t) + R(t)) − uEIR(t) + V (t) + V δ(t)

= −μ(t)(E(t) + I(t) + R(t))

+
β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)

−ω(t)R(t) − γ(t)ρ(t)I(t) +
∣∣η(t)∣∣ + V (t) + V δ(t),

(4.1)

where

uEIR(t) : = −μ(t)(N(t) − S(t)) − (
Ṅ(t) − Ṡ(t)

)
+ V (t) + V δ(t)

= ω(t)R(t) − β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)

− ∣∣η(t)∣∣ + γ(t)ρ(t)I(t),

(4.2a)

V (t) = ν(t)N(t)

(
q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)V (t)dτ

)
, (4.2b)

V δ(t) = ν(t)g(t)Vθ(t)S(t)δ(t − ti). (4.2c)

The non-negativity of any considered partial population is equivalent to the sum of the other
three partial populations being less than or equal to the total population. Then, the following
result holds from (3.3) and (4.1) concerning the non negative of the solution of the susceptible
population for all time.
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Assertion 1. S(t) ≥ 0, for all t ∈ R0+ in the SEIR generalized model (2.1)–(2.5) if and only if

N(t) − e−
∫ t
0 μ(τ)dτ(N(0) − S(0)) +

∫ t

0
e−

∫ t
τ μ(τ

′)dτ ′
(
uEIR(τ) − V (τ) − V δ(τ)

)
dτ

= e−
∫ t
0 μ(τ)dτ

(
e
∫ t
τ ν(τ)dτ − 1

)
N(0) + e−

∫ t
0 μ(τ)dτS(0)

+
∫ t

0
e−

∫ t
τ μ(τ

′)dτ ′
((

e
∫ t
τ ν(τ

′)dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ)
))

+ uEIR(τ) − V (τ) − V δ(τ)
)

× dτ ≥ 0; ∀t ∈ R0+.

(4.3)

4.2. Positivity of the Infected Population of the Generalized SEIR Model

The total susceptible plus infectious plus removed obeys the differential equation

Ṡ(t) + İ(t) + Ṙ(t) =
(
ν(t) − μ(t)

)
(S(t) + I(t) + R(t)) + λ(t) − γ(t)ρ(t)I(t) − uSIR(t)

=
(
ν(t) − μ(t)

)
(S(t) + I(t) + R(t)) + λ(t) + (ν(t) + σ(t))E(t)

− γ(t)ρ(t)I(t) − uE(t)

− ∣∣η(t)∣∣ − β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)

+
β(t − hE(t))kE(t − hE(t))

N(t − hE(t))
S(t − hE(t))I(t − hE(t)),

(4.4)

where

uSIR(t) : =
∣∣η(t)∣∣ + uE(t) − (ν(t) + σ(t))E(t)

+
β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)

− β(t − hE(t))kE(t − hE(t))
N(t − hE(t))

S(t − hE(t))I(t − hE(t)).

(4.5)

Then, the following result holds concerning the non negativity of the infected population.

Assertion 2. E(t) ≥ 0, for all t ∈ R0+ if and only if

e
∫ t
0(ν(τ)−μ(τ))dτE(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′uSIR(τ)dτ ≥ 0; ∀t ∈ R0+. (4.6)
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4.3. Positivity of the Infectious Population of the Generalized SEIR Model

The total susceptible plus infected plus removed population obeys the following differential
equation:

Ṡ(t) + Ė(t) + Ṙ(t)

=
(
ν(t) − μ(t)

)
(S(t) + E(t) + R(t)) + λ(t) − γ(t)ρ(t)I(t) − uSER(t)

= −μ(t)(S(t) + E(t) + R(t)) + ν(t)N(t)

+ λ(t) − σ(t)E(t) + γ(t)
(
1 − ρ(t)

)
I(t) + uE(t) − uI(t)

− β(t − hE(t))kE(t − hE(t))
N(t − hE(t))

S(t − hE(t))I(t − hE(t))

+
β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))

N(t − hE(t) − hI(t))
S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

=
(
ν(t) − μ(t)

)
N(t) +

(
μ(t) + γ(t)

(
1 − ρ(t)

))
I(t)

+ λ(t) − σ(t)E(t) + uE(t) − uI(t) −
β(t − hE(t))kE(t − hE(t))

N(t − hE(t))
S(t − hE(t))I(t − hE(t))

+
β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))

N(t − hE(t) − hI(t))
S(t − hE(t) − hI(t))I(t − hE(t) − hI(t)),

(4.7)

where

uSER(t) : = σ(t)E(t) − (
ν(t) + γ(t)

)
I(t) + uI(t) − uE(t)

+
β(t − hE(t))kE(t − hE(t))

N(t − hE(t))
S(t − hE(t))I(t − hE(t))

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))I(t − hE(t) − hI(t)).

(4.8)

Thus, we have the following result concerning the non negativity of the infectious population.

Assertion 3. I(t) ≥ 0, for all t ∈ R0+ in the SEIR generalized model (2.1)–(2.5) if and only if

e
∫ t
0(ν(τ)−μ(τ))dτI(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′uSER(τ)dτ ≥ 0; ∀t ∈ R0+. (4.9)
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4.4. Positivity of the Removed by Immunity Population of
the Generalized SEIR Model

The total numbers of susceptible, infected, and infectious populations obey the following
differential equation

Ṡ(t) + Ė(t) + İ(t)

= −μ(t)(S(t) + E(t) + I(t)) + λ(t) − γ(t)I(t) +ω(t)R(t) + uI(t)

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

+ ν(t)N(t) − V (t) − V δ(t)

=
(
ν(t) − μ(t)

)
N(t) + λ(t) − γ(t)I(t) +

(
μ(t) +ω(t)

)
R(t) + uI(t)

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

− V (t) − V δ(t)

= Ṅ(t) − γ(t)
(
1 − ρ(t)

)
I(t) +

(
μ(t) +ω(t)

)
R(t) + uI(t)

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

− V (t) − V δ(t)

=
(
ν(t) − μ(t)

)
(S(t) + E(t) + I(t)) + λ(t) − γ(t)I(t) + (ν(t) +ω(t))R(t) + uI(t)

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

− V (t) − V δ(t)

=
(
ν(t) − μ(t)

)
(S(t) + E(t) + I(t)) + λ(t) − γ(t)ρ(t)I(t) − uSEI(t) − V (t) − V δ(t),

(4.10)

where

uSEI(t) : = −(ν(t) +ω(t))R(t) − uI(t) + γ(t)
(
1 − ρ(t)

)
I(t)

+
β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))

N(t − hE(t) − hI(t))
S(t − hE(t) − hI(t))I(t − hE(t) − hI(t)).

(4.11)

Then, the following result holds concerning the non negativity of the immune population.

Assertion 4. R(t) ≥ 0, for all t ∈ R0+ in the SEIR generalized model (2.1)–(2.5) if and only if

e
∫ t
0(ν(τ)−μ(τ))dτR(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′
(
V (τ) + V δ(τ) + uSEI(τ)

)
dτ ≥ 0. (4.12)
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Assertions 1–4, Theorem 3.1, Corollary 3.3, and Theorems 3.4-3.5 yield directly the
following combined positivity and stability theorem whose proof is direct from the above
results.

Theorem 4.1. The following properties hold.

(i) If Assertions 1–4 hold jointly, then, the populations S(t), E(t), I(t), and R(t) in the
generalized SEIR model (2.1)–(2.5) are lower bounded by zero and upper bounded by
N(t), for all t ∈ R0+. If, furthermore, either Theorem 3.1, or Corollary 3.3, or Theorem 3.4
or Theorem 3.5 holds, then S(t), E(t), I(t), and R(t) are bounded for all t ∈ R0+.

(ii) Assume that

(1) for each time instant t ∈ R0+, any three assertions among weakly formulated
Assertions 1–4 hold jointly in the sense that their given statements are reformulated
for such a time instant t ∈ R0+ instead for all time,

(2) the three corresponding inequalities within the set of four inequalities (4.3), (4.6),
(4.9), and (4.12) are, furthermore, upper bounded by N(t) for such a time instant
t ∈ R0+,

(3) either Theorem 3.1, or Corollary 3.3, or Theorem 3.4 or Theorem 3.5 holds, then S(t),
E(t), I(t) and R(t) are bounded for all t ∈ R0+.

Then, the populations S(t), E(t), I(t), and R(t) of the generalized SEIR model (2.1)–(2.5) are lower
bounded by zero and upper bounded byN(t) what is, in addition, bounded, for all t ∈ R0+.

4.5. Easily Testable Positivity Conditions

The following positivity results for the solution of (2.1)–(2.4), subject to (2.5), are direct and
easy to test.

Assertion 5. Assume that min(S(t), E(t), I(t), R(t)) ≥ 0, for all t ∈ [−h, 0]. Then, S(t) ≥
0, for all t ∈ R0+ if and only if the conditions below hold:

(a) [(S(t) > 0 ∧ Vθ(t) ≤ 1/(ν(t)g(t))) ∨ S(t) = 0; for all t ∈ IMP] and

(b)

S(t) = 0 for t ∈ R0+ \ IMP

=⇒
{[

Ṡ(t) ≡ λ(t) +ω(t)R(t) + ν(t)N(t)

×
(
1 −

q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)V (t)dτ

)
− ∣∣η(t)∣∣ > 0

]

∨
[
Ṡ
(
t′
) ≡ λ

(
t′
)
+ω

(
t′
)
R
(
t′
)
+ ν

(
t′
)
N

(
t′
)

×
(
1 −

q∑
i=1

∫ t′−hV i(t′)

t′−hV i(t′)−h′
V i(t

′)
fV i

(
τ, t′

)
V (t)dτ

)
− ∣∣η(t′)∣∣ ≥ 0; ∀t′ ∈ (t, t + ε)

]}

(4.13)

for some sufficiently small ε ∈ R+.
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Remark 4.2. The positivity of the susceptible population has to be kept also in the absence of
vaccination. In this way, note that if Assertion 5 holds for a given vaccination function V and
a given impulsive vaccination distribution Vθ, then it also holds if those vaccination function
and distribution are identically zero.

Assertion 6. Assume that min(S(t), E(t), I(t), R(t)) ≥ 0, for all t ∈ [−h, 0]. Then, E(t) ≥
0, for all t ∈ R0+ if and only if

E(t) = 0, for t ∈ R0+

=⇒
{[

0 ≤ kE(t − hE(t)) <
N(t − hE(t))

β(t − hE(t))S(t − hE(t))I(t − hE(t))
β(t)S(t)
N(t)

×
(

p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ + uE(t) +

∣∣η(t)∣∣
)]

∨
[
0 ≤ kE

(
t′ − hE

(
t′
)) ≤ N(t′ − hE(t′))

β(t′ − hE(t′))S(t′ − hE(t′))I(t′ − hE(t′))
β(t′)S(t′)
N(t′)

×
(

p∑
i=1

∫hi(t′)

0
fi
(
τ, t′

)
I
(
t′ − τ

)
dτ + uE

(
t′
)
+
∣∣η(t′)∣∣

)
;

∀t′ ∈ (t − hE(t), t − hE(t) + ε)

]}

(4.14)

for some sufficiently small ε ∈ R+.

Assertion 7. Assume that min(S(t), E(t), I(t), R(t)) ≥ 0, for all t ∈ [−h, 0]. Then, I(t) ≥
0, for all t ∈ R0+ if and only if

I(t) = 0, for t ∈ R0+

=⇒
{[

0 ≤ kI(t − hE(t) − hI(t))

<
N(t − hE(t) − hI(t))

β(t − hE(t) − hI(t))S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

×
(
β(t − hE(t))kE(t − hE(t))

N(t − hE(t))
S(t − hE(t))I(t − hE(t)) + σ(t)E(t) + uI(t) − uE(t)

)]

∨
[
0 ≤ kI

(
t − hE

(
t′
) − hI

(
t′
))

≤ N(t′ − hE(t′) − hI(t′))
β(t′ − hE(t′) − hI(t′))S(t′ − hE(t′) − hI(t′))I(t′ − hE(t′) − hI(t′))

×
(
β(t′ − hE(t′))kE(t′ − hE(t′))

N(t′ − hE(t′))
S
(
t′ − hE

(
t′
))
I
(
t′ − hE

(
t′
))

+ σ
(
t′
)
E
(
t′
)

+uI

(
t′
) − uE

(
t′
))

; ∀t′ ∈ (t − hE(t) − hI(t), t − hE(t) − hI(t) + ε)
]}

,

(4.15)

for some sufficiently small ε ∈ R+.
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The following result follows from (2.3) and it is proved in a close way to the proof of
Assertions 5–7.

Assertion 8. Assume that min(S(t), E(t), I(t), R(t)) ≥ 0, for all t ∈ [−h, 0]. Then, R(t) ≥
0, for all t ∈ R0+ for any given vaccination law satisfying V : R0+ → R0+ and Vθ : R0+ → R0+

if

R(t) = 0, for t ∈ R0+

=⇒
{[

kI(t − hE(t) − hI(t)) >
N(t − hE(t) − hI(t))

β(t − hE(t) − hI(t))S(t − hE(t) − hI(t))I(t − hE(t) − hI(t))

×
(
uI(t) − γ(t)

(
1 − ρ(t)

)
I(t) − ν(t)N(t)

(
q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)V (t)dτ

))]

∨
[
kI

(
t′ − hE

(
t′
) − hI

(
t′
))

≥ N(t′ − hE(t′) − hI(t′))
β(t′ − hE(t′) − hI(t′))S(t′ − hE(t′) − hI(t′))I(t′ − hE(t′) − hI(t′))

×
(
uI

(
t′
) − γ

(
t′
)(
1 − ρ

(
t′
))
I
(
t′
) − ν

(
t′
)
N

(
t′
)

×
(

q∑
i=1

∫ t′−hV i(t′)

t′−hV i(t′)−h′
V i(t

′)
fV i

(
τ, t′

)
V
(
t′
)
dτ

))
;

∀t′ ∈ (t − hE(t) − hI(t), t − hE(t) − hI(t) + ε)

]}

(4.16)

for some sufficiently small ε ∈ R+.

The subsequent result is related to the first positivity interval of all the partial
susceptible, infected, infectious, and immune populations under not very strong conditions
requiring the (practically expected) strict positivity of the susceptible population at t = 0, the
infected-infectious threshold constraint uI(0) ≥ uE(0) > 0 and a time first interval monitored
boundedness of the infectious population which is feasible under the technical assumption
that the infection spread starts at time zero.

Assertion 9. Assume that

(1) the set of absolutely continuous with eventual bounded discontinuities functions of
initial conditions ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+ satisfy, furthermore, the subsequent
constraints:

N(t) ≥ S(t) = ϕS(t) = S(0) = ϕS(0) > 0, ∀ t ∈
[
−h, 0

]
, E(0) = ϕE(0) = I(0) = ϕI(0) = 0,

(4.17)
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(2) uI(0) ≥ uE(0) > 0, 0 /∈ IMP and, furthermore, it exists TI ∈ R+ such that the
infectious population satisfies the integral inequality,

∫ t

0

(
γ(τ)

(
1 − ρ(τ)

)
I(τ) − uI(τ)

)
dτ ≥ 0; ∀t ∈ [0, TI]. (4.18)

Then, N(t) ≥ S(t) ≥ 0,N(t) ≥ E(t) ≥ 0,N(t) ≥ I(t) ≥ 0, and N(t) ≥ R(t) ≥
0, for all t ∈ [0, TI] irrespective of the delays and vaccination laws that satisfy 0 /∈
IMP (even if the SEIR model (2.1)–(2.5) is vaccination free). Furthermore, N(t) ≥
S(t) > 0, N(t) ≥ E(t) > 0, N(t) ≥ I(t) > 0, for all t ∈ (0, TI] irrespective of the
delays and vaccination law even if the SEIR model (2.1)–(2.5) is vaccination-free.

Note that IMP(t+) = IMP(t), that is, the set of impulsive time instants in [0, t] is
identical to that in [0, t) if and only if t /∈ IMP and IMP(t+) := {ti ∈ IMP : ti ≤ t} includes
t if and only if t ∈ IMP. Note also that R(t+) = R(t) if and only if ν(t)g(t)Vθ(t)S(t) = 0, in
particular, if t /∈ IMP. A related result to Assertion 9 follows.

Assertion 10. Assume that the constraints of Assertion 9 hold except that E(0) = 0 is replaced
by (uE(0)+ |η(0)|)/(μ(0)+σ(0)) > E(0) ≥ 0. Then, the conclusion of Assertion 9 remains valid.

A positivity result for the whole epidemic model (2.1)–(2.5) follows.

Theorem 4.3. Assume that the SEIR model (2.1)–(2.5) under any given set of absolutely continuous
initial conditions ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+, eventually subject to a set of isolated bounded
discontinuities, is impulsive vaccination free, satisfies Assumptions 1, the constraints (4.14)–(4.16)
and, furthermore,

0 ≤ Sup
t∈clR0+

V (t) ≤ 1; λ(t) ≥ ∣∣η(t)∣∣; ∀t ∈ R0+. (4.19)

Then, its unique mild solution is nonnegative for all time.

Theorem 4.3 is now directly extended to the presence of impulsive vaccination as
follows. The proof is direct from that of Theorem 4.3 and then omitted.

Theorem 4.4. Assume that the hypotheses of Theorem 4.3 hold and, furthermore, Vθ(t) ≤
1/(ν(t)g(t)), for all t ∈ IMP such that S(t)/= 0. Then, the solution of the SEIR model (2.1)–(2.5) is
nonnegative for all time.

5. Vaccination Law for the Achievement of a Prescribed Infectious
Trajectory Solution

A problem of interest is the calculation of a vaccination law such that a prescribed suitable
infectious trajectory solution is achieved for all time for any given set of initial conditions
of the SEIR model (2.1)–(2.5). The remaining solution trajectories of the various populations
in (2.1)–(2.4) are obtained accordingly. In this section, the infected trajectory is calculated so
that the infectious one is the suitable one for the given initial conditions. Then, the suited
susceptible trajectory is such that the infected and infectious ones are the suited prescribed
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ones. Finally, the vaccination law is calculated to achieve the immune population trajectory
such that the above suited susceptible trajectory is calculated. In this way, the whole solution
of the SEIR model is a prescribed trajectory solution which makes the infectious trajectory
to be a prescribed suited one (for instance, exponentially decaying) for the given delay
interval-type set of initial condition functions. The precise mathematical discussion of this
topic follows through Assertions 11–13 and Theorem 5.1 below.

Assertion 11. Consider any prescribed suitable infectious trajectory I∗ : [−h, 0] ∪ R+ → R0+

fulfilling I∗ ∈ PC(1)(R0+,R) and assume that the infected population trajectory is given by the
expression:

E∗(t) = σ−1(t)
{
İ∗(t) +

(
μ(t) + γ(t)

)
I∗(t) − β(t − hE(t))kE(t − hE(t))

N∗(t − hE(t))

× S(t − hE(t))I∗(t − hE(t)) +
β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))

N∗(t − hE(t) − hI(t))

×S(t − hE(t) − hI(t))I∗(t − hE(t) − hI(t)) + uE(t) − uI(t)
}
; ∀t ∈ R+,

(5.1)

which is in PC(0)(R0+,R) for any susceptible trajectory S : [−h, 0] ∪ R+ → R0+ under initial
conditions ϕS, ϕE, ϕ

∗
I(t) ≡ ϕI(t), ϕR : [−h, 0] → R0+, where the desired total population N(t)

is calculated from (3.3) as the desired population N∗(t) is given by

N∗(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I∗(τ)
)
dτ (5.2)

with initial conditions being identical to those of N(t) = ϕS(t) + ϕE(t) + ϕI(t) + ϕR(t), t ∈
[−h, 0]. Then, the infected population trajectory (5.1) guarantees the exact tracking of the
infectious population of the given reference infectious trajectory I(t) ≡ I∗(t), for all t ∈ R+

which furthermore satisfies the differential equation (2.3).

Assertion 12. Assume that σ, (μ + γ), (βkE), (uE − uI) ∈ PC(0)(R0+,R) and that hE : R0+ → R+.
Consider the prescribed suitable infectious trajectory I∗ : [−h, 0] ∪ R+ → R0+ of Assertion 11
and assume also that the infected population trajectory is given by (5.1). Then, the susceptible
population trajectory given by the expression

S∗(t) =
N∗(t)

β(t)
(∑p

i=1

∫hi(t)
0 fi(τ, t)I∗(t − τ)dτ

)

×
{
Ė∗(t) +

β(t − hE(t))kE(t − hE(t))
N∗(t − hE(t))

S∗(t − hE(t))I∗(t − hE(t))

+
(
μ(t) + σ(t)

)
E∗(t) − uE(t) −

∣∣η(t)∣∣}; ∀t ∈ R+

(5.3)
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is in PC(1)(R0+,R) under initial conditions ϕS, ϕ
∗
E ≡ ϕE, ϕ

∗
I ≡ ϕI, ϕR : [−h, 0] → R0+ with N∗ :

R+ → R0+ being given by (5.2) with initial conditions N∗(t) = N(t) = ϕS(t) + ϕE(t) + ϕI(t) +
ϕR(t), t ∈ [−h, 0]. Then, the susceptible population trajectory (5.3), subject to the infected
one (5.1), guarantees the exact tracking of the infectious population of the given reference
infectious trajectory I(t) ≡ I∗(t), for all t ∈ R+ with the suited reference infected population
differential equation satisfying (2.2).

Assertion 13. Assume that λ, σ, (μ+γ), (βkE), (βkI), (uE−uI), fi ∈ PC(0)(R0+,R), for all i ∈ p
and that hE : R0+ → R+ fulfils in addition hE ∈ PC(1)(R0+,R). Assume also that

q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fVi(τ, t)dτ ≥ f > 0; ∀ t ∈ R0+. (5.4)

Consider the prescribed suitable infectious trajectory I∗ : [−h, 0] ∪ R+ → R0+ of
Assertions 11–12 under initial conditions ϕS, ϕ

∗
E ≡ ϕE, ϕ

∗
I ≡ ϕI, ϕR : [−h, 0] → R0+ with

N : R+ → R0+ being given by (5.2) with initial conditions. Then, the vaccination law

V (t) =
1

ν(t)N∗(t)
(∑q

i=1

∫ t−hV i(t)
t−hV i(t)−h′

V i(t)
fV i(τ, t)dτ

)

×
{
λ(t) + ν(t)N∗(t) − Ṡ∗(t) − μ(t)S∗(t) − β(t)S∗(t)

N∗(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I∗(t − τ)dτ

)

− ∣∣η(t)∣∣ +ω(t)

[
e
− ∫ t

ti
(μ(τ)+ω(τ))dτ

R∗(t+i ) +
∫ t

ti

e−
∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′

×
[
γ(τ)

(
1 − ρ(τ)

)
I∗(τ) − uI(τ) + ν(τ)N(τ)

×
(

q∑
i=1

∫ τ−hV i(τ)

τ−hV i(τ)−h′
V i(τ)

fV i

(
τ ′, τ

)
V (τ)dτ ′

)

+
β(τ − hE(τ) − hI(τ))kI(τ − hE(τ) − hI(τ))

N∗(τ − hE(τ) − hI(τ))

×S∗(τ − hE(τ) − hI(τ))I∗(τ − hE(τ) − hI(τ))

]
dτ

]}
;

∀t ∈ [ti, ti+1), ∀ti, ti+1 ∈ IMP such that (ti, ti+1) ∩ IMP = ∅,
(5.5)

Vθ(t) =

⎧⎪⎪⎨
⎪⎪⎩

R∗(t+) − R∗(t)
ν(t)g(t)S∗(t)

if (S∗(t)/= 0 ∧ t ∈ IMP),

0 otherwise,

(5.6)
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makes the immune population trajectory to be given by the expression

R∗(t) = ω−1(t) ×
{
Ṡ∗(t) − λ(t) + μ(t)S∗(t) +

β(t)S∗(t)
N∗(t)

×
(

p∑
i=1

∫hi(t)

0
fi(τ, t)I∗(t − τ)dτ

)
− ν(t)N∗(t)

+ν(t)N∗(t)

(
q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)dτ

)
V (t) +

∣∣η(t)∣∣
}
;

∀t ∈ R+ \ IMP,

(5.7)

R∗(t+) = R∗(t) + ν(t)g(t)Vθ(t)S∗(t), ∀t ∈ IMP, (5.8)

which follows from (2.1) and (A.8), such that R∗ ∈ PC(0)(R0+,R) and R∗ ∈
PC(1)(

⋃
ti∈IMP(ti, ti+1),R). Then, the immune population trajectory (5.7)-(5.8), subject to the

infected one (5.1) and the susceptible one (5.3), guarantees the exact tracking of the infectious
population of the given reference infectious trajectory I(t) ≡ I∗(t), for all t ∈ R+ with the
infected, susceptible, and immune population differential equations satisfying their reference
ones (2.1), (2.3), and (2.4).

Note that the regular plus impulsive vaccination law (5.5)-(5.6) ensures that a suitable
immune population trajectory (5.7)-(5.8) is achieved. The combination of Assertions 11–13
yields the subsequent result.

Theorem 5.1. The vaccination law (5.5)–(5.6)makes the solution trajectory of the SEIR model (2.1)–
(2.5), to be identical to the suited reference one for all time provided that their functions of initial
conditions are identical.

The impulsive part of the vaccination law might be used to correct discrepancies
between the SEIR model (2.1)–(2.5) and its suited reference solution due, for instance, to an
imperfect knowledge of the functions parameterizing (2.1)–(2.4) which are introduced with
errors in the reference model. The following result is useful in that context.

Corollary 5.2. Assume that (|t −max(ti ∈ IMP(t))| ≥ εimp) ∧ (S∗(t)/= 0) for some t ∈ R0+ and any
given εR, εimp ∈ R+. Then, R(t) = R∗(t+) (prescribed) if Vθ(t) = (R∗(t+) − R(t))/(ν(t)g(t)S∗(t))
with t ∈ IMP so that IMP(t+) = IMP(t) ∪ {t}.

Note that |t−max(ti ∈ IMP(t))| ≥ εimp > 0 guarantees the existence of a unique solution
of (2.1)–(2.4) for each set of admissible initial conditions and a vaccination law. Corollary 5.2
is useful in practice in the following situation|R(t) − R∗(t)| ≥ εR due to errors in the SEIR
model (2.1)–(2.5) for some prefixed unsuitable sufficiently large εR ∈ R+. Then, an impulsive
vaccination at time t may be generated so that |R∗(t+) − R(t)| < εR.
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Extensions of the proposed methodology could include the introduction of hybrid
models combining continuous-time and discrete systems and resetting systems by jointly
borrowing the associate analysis of positive dynamic systems involving delays [15, 16, 26–
28].

6. Simulation Example

This section contains a simulation example concerning the vaccination policy presented in
Section 5. The free-vaccination evolution and then vaccination policy given in (5.5)-(5.6)
are studied. The case under investigation relies on the propagation of influenza with the
elementary parameterization data previously studied for a real case in [7, 29], for time-
invariant delay-free SIR and SEIR models without epidemic threshold functions. In the first
subsection below, the ideal case when the parameterization is fully known is investigated
while in the second subsection, some extra simulations are given for the case where some
parameters including certain delays are not fully known in order to investigate the robustness
against uncertainties of the proposed scheme.

6.1. Ideal Case of Perfect Parameterization

The time-varying parameters of the system described by equations (2.1)–(2.4) are given
by: μ(t) = μ0(1 + 0.05 cos(2πft)), σ(t) = σ0(1 + 0.075 cos(2πft)), ω(t) = ω0(1 +
0.1 cos(2πft)), γ(t) = σ(t), β(t) = β0(1 + 0.15 cos(2πft)), ν(t) = 0.8λ(t), λ(t) = λ0(1 +
0.05 cos(2πft)), which represent periodic oscillations around fixed values given by β0 =
0.085(days)−1, 1/μ0 = 25550 days, λ0 = 11.75μ0 (the natural growth rate is larger than the
natural death rate), 1/σ0 = 2.2 days, 1/ω0 = 15 days, γ0 = σ0, and ν0 = 0.8λ0, which
means that the 80% of newborns are immediately vaccinated. The frequency is f = 2π/T ,
where the period T , in the case of influenza, is fixed to one year. The remaining parameters
are given by: kE(t) = kI(t) = e−5μ(t), ρ = 5 · 10−5 per day, uE = 2.24 per day, uI = 3 per
day, η(t) = −1 (a constant total contribution of external infectious is assumed), and the
delays hE = 5 days, hI = 4 days, h1 = 3 days, h2 = 2 days, hV 1 = 1 days, and h′

V 1 = 2
days. The weighting functions are given by f1 = f2 = 0.4, fV 1 = 0.1, g(t) = 1. The initial
conditions are punctual at t = 0 with E(0) = 678, S(0) = 9172, R(0) = 0, and I(0) = 150
individuals and remain constant during the interval [−5, 0] days. The population evolution
behavior without vaccination is depicted in Figure 1 while the total population is given by
Figure 2.

As it can be appreciated from Figure 2, the total population increases slightly with time
as it corresponds to a situationwhere the natural growth rate is larger than the combination of
the natural and illness-associated death rates. As Figure 1 points out, the infectious trajectory
possesses a peak value of 2713 individuals and then it stabilizes at a constant value of 1074
individuals. The goals of the vaccination policy are twofold, namely, to decrease the trajectory
peak and to reduce the number of infected individuals at the steady-state.

The vaccination policy of (5.5)-(5.6) is implemented to fulfil those objectives. The
desired infectious trajectory to be tracked by the vaccination law is selected as shown
in Figure 3. Note that the shape of the desired trajectory is similar to the vaccination-
free trajectory but with the above-mentioned goals incorporated: the peak and the steady-
state values are much smaller. The partial populations are depicted in Figure 4 when the
vaccination law (5.5)-(5.6) is implemented.
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Figure 1: Evolution of the populations without vaccination.
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Figure 2: Evolution of the total population.

On one hand, the populations reach the steady-state very quick. This occurs since the
desired infectious trajectory reaches the steady-state in only 10 days. On the other hand,
the above-proposed goals are fulfilled as Figure 5 following on the infectious trajectory
shows.

The peak in the infectious reaches only 607 individuals while the steady-state value is
65 individuals. These results are obtained with the vaccination policy depicted in Figure 6.

The vaccination effort is initially very high in order to make the system satisfies the
desired infectious trajectory. Afterwards, it converges to a constant value. Moreover, note
that with this vaccination strategy, the immune population increases while the susceptible,
infected, and infectious reduces in comparison with the vaccination-free case. However, since
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Figure 3: Desired infectious trajectory.
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Figure 4: Populations under vaccination.

the total population increases in time (Figure 2), the number of susceptible and infected
individuals would also increase through time as the infectious population remains constant.
In order to reduce this effect, an impulse vaccination strategy is considered. The vaccination
impulses according to the law (5.6) are injected in order to increase the immune population by
100 individuals while removing the same number of individuals from the susceptible. Figures
7 and 8 display a zoom on the immune and susceptible populations when the impulsive effect
is considered. The vaccination law is shown in Figure 9.

Note that the impulsive vaccination allows to improve the numbers of the immune
population at chosen time instants, for instance, in cases when the total population increases
through time while the disease tends to spread rapidly.



Advances in Difference Equations 27

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

In
d
iv
id
ua

ls

Systemwith vaccination. Infectious trajectory

Days

Figure 5: Comparison between real and desired trajectories.
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Figure 6: Vaccination law.

6.2. Simulations with Uncertainties

This subsection contains some numerical examples concerning the case when small
uncertainties in some of the parameters of the system are present. In particular, the new
values for the parameters are: 1/μ0 = 22500 days, ν0 = 0.4 λ0, uE = 10 day−1, uI = 1 day−1,
and especially, the modified delays are: hE = 3, hI = 5, h1 = 4, h2 = 1, hV 1 = 4, and h′

V 1 = 3
days. Furthermore, a small uncertainty in the initial susceptible and infected populations is
considered with S(0) = 9150 and I(0) = 172 instead of 9172 and 150, respectively, taken
as initial nominal values. The following Figures 10, 11, and 12 show the ideal responses for
the infectious, infective, and immune and the ones obtained when the real system possesses
different parameters (i.e., system with uncertainties).
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Figure 8: Susceptible population evolution with impulse vaccination.

As it can be deduced from Figures 10, 11, and 12, the proposed vaccination strategy is
robust to small uncertainties in its parameters, especially in the delays. Also, the impulsive
vaccination possesses the same effect as in the example of the ideal case, that is, it increases
the immune by 100 individuals at each impulsive instant and could be used to mitigate
any potential deviation of the immune population due to the parameters mismatch. More
technical solutions could be made for the case of presence of uncertainties, as for instance,
the use of observers to estimate the state and the use of estimation-based adaptive control for
the case of parametrical uncertainties.
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Figure 9: Vaccination law with impulses.
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Figure 10: Infectious evolution in the presence of small uncertainties.

7. Concluding Remarks

This paper has dealt with the proposal and subsequent investigation of a time-varying
SEIR-type epidemic model of true mass-action type. The model includes time-varying point
delays for the infected and infectious populations and distributed delays for the disease
transmission effect in the model. The model also admits a potential mortality associated
with the disease, a potential lost of immunity of newborns at birth, the presence of threshold
population residuals in the infected and infectious populations as well as the contribution to
the disease propagation in the local population of potential outsiders taking part of a floating
population. A combined regular plus impulsive vaccination strategy has been proposed to
remove the disease effects, the second one being used to correct major discrepancies with
respect to the suitable population trajectories. The main issues have been concerned with the
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Figure 11: Infected evolution in the presence of small uncertainties.
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Figure 12: Immune evolution in the presence of small uncertainties.

stability, positivity, andmodel-following of a suitable reference strategy via vaccination. Also,
an example for the influenza disease has been given.

Appendices

A. Explicit Solutions of the SEIR model

A close discussion to that used to obtain the total population (3.3) from (3.1) applies for
several of the remaining formulas for the nonimpulsive time instants or to the left of such
instants. Assume that ti, ti+1 ∈ IMP are two consecutive impulsive time instants, that is,
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(ti, ti+1)∩ IMP = ∅. Direct calculations of the solutions of (2.1)–(2.4), subject to (2.5) and some
admissible set of functions of initial conditions, yield

S(t) = e
− ∫ t

ti
μ(τ)dτ

S
(
t+i
)

+
∫ t

ti

e−
∫ t
τ μ(τ

′)dτ ′
[
λ(τ) +ω(τ)R(τ) + ν(τ)N(τ)

×
(
1 −

q∑
i=1

∫ τ−hV i(τ)

τ−hV i(τ)−h′
V i(τ)

fV i

(
τ ′, τ

)
V (τ)dτ ′

)

−β(τ)S(τ)
N(τ)

(
p∑
i=1

∫hi(τ)

0
fi
(
τ ′, τ

)
I
(
τ − τ ′

)
dτ ′

)
− ∣∣η(τ)∣∣

]
dτ ;

∀t ∈ [ti, ti+1), ∀ti, ti+1 ∈ IMP,

(A.1)

S
(
t+i+1

)
=

(
1 − ν(ti+1)g(ti+1)Vθ(ti+1)

)
S(ti+1), ∀ti, ti+1 ∈ IMP, (A.2)

E(t) = e
− ∫ t

ti
(μ(τ)+σ(τ))dτ

E
(
t+i
)

+
∫ t

ti

e−
∫ t
τ (μ(τ

′)+σ(τ ′))dτ ′
[
uE(τ) +

∣∣η(τ)∣∣ + β(τ)S(τ)
N(τ)

(
p∑
i=1

∫hi(τ)

0
fi
(
τ ′, τ

)
I
(
τ − τ ′

)
dτ ′

)

−β(τ − hE(τ))kE(τ − hE(τ))
N(τ − hE(τ))

S(τ − hE(τ))I(τ − hE(τ))

]
dτ ;

∀t ∈ [ti, ti+1), ∀ti, ti+1 ∈ IMP,
(A.3)

E
(
t+i+1

)
= E(ti+1), ∀ti, ti+1 ∈ IMP, (A.4)

I(t) = e
− ∫ t

ti
(μ(τ)+γ(τ))dτ

I
(
t+i
)

+
∫ t

ti

e−
∫ t
τ (μ(τ

′)+γ(τ ′))dτ ′
[
σ(τ)E(τ) + uI(τ) − uE(τ) +

β(τ − hE(τ))kE(τ − hE(τ))
N(τ − hE(τ))

× S(τ − hE(τ))I(τ − hE(τ))

− β(τ − hE(τ) − hI(τ))kI(τ − hE(τ) − hI(τ))
N(τ − hE(τ) − hI(τ))

×S(τ − hE(τ) − hI(τ))I(τ − hE(τ) − hI(τ))
]
dτ ;

∀t ∈ [ti, ti+1), ∀ti, ti+1 ∈ IMP,

(A.5)

I
(
t+i+1

)
= I(ti+1), ∀ti, ti+1 ∈ IMP, (A.6)
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R(t) = e
− ∫ t

ti
(μ(τ)+ω(τ))dτ

R
(
t+i
)

+
∫ t

ti

e−
∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′
[
γ(τ)

(
1 − ρ(τ)

)
I(τ) − uI(τ) + ν(τ)N(τ)

×
(

q∑
i=1

∫ τ−hV i(τ)

τ−hV i(τ)−h′
V i(τ)

fV i

(
τ ′, τ

)
V (τ)dτ ′

)

+
β(τ − hE(τ) − hI(τ))kI(τ − hE(τ) − hI(τ))

N(τ − hE(τ) − hI(τ))

×S(τ − hE(τ) − hI(τ))I(τ − hE(τ) − hI(τ))

]
dτ ;

∀t ∈ [ti, ti+1), ∀ti, ti+1 ∈ IMP,

(A.7)

R
(
t+i+1

)
= R(ti+1) + ν(ti+1)g(ti+1)Vθ(ti+1)S(ti+1), ∀ti, ti+1 ∈ IMP. (A.8)

B. Mathematical Proofs

Proof of Theorem 3.4. Assume with no loss in generality, since tα is finite, that tα = 0. Note
from (3.4) that ifN(t) = 0 for some t ∈ R0+ so that Ṅ(t) = W(t) = Ẇ(t) = 0, then I(t) = 0 for
t ∈ R0+, since λ(t) is zero if N(t) < 1. This implies that N(τ) = 0, for all τ(≥ t) ∈ R0+. Thus,
the continuity ofN(t) everywhere in R0+ implies thatN(t) < 0 is impossible ifN(0) ≥ 0 since
if ta ∈ R0+ is the first time instant, if any, for which N(ta) = 0, then N(ta) = 0, for all t ≥ ta.
Thus, the total population is nonnegative for all time for any bounded nonnegative initial
value. The combined triangle and Schwartz’s inequalities used in (3.3) yield

0 ≤ N(t) ≤ e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

[∫ t
0

(
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′
)2
dτ

]1/2

×
[∫ t

0

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)2
dτ

]1/2 (B.1)

≤ e−ρ0tN(0) +
√
Ke−εt

(∫ t

0
e−2ρ0τdτ

)1/2

≤ e−ρ0tN(0) +

√
K

2ρ0
e−εt; ∀t ∈ R0+, (B.2)

and N(t) converges to zero at an exponential rate less than any number larger than
max(−ρ0,−ε). The second part follows from (B.2) for ε = 0 leading to

0 ≤ N(t) ≤ e−ρ0tN(0) +

√
K

2ρ0
< +∞; ∀t ∈ R0+. (B.3)
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Proof of Theorem 3.5. Note from (3.17) and (3.3) that

e
∫ t
0(ν(τ)−μ(τ))dτ ≤ e−ρ0t; ∀t(≥ tα) ∈ R0+,

N(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ)
)
dτ,

(B.4)

for some prefixed finite tα ∈ R0+. First, rewrite (3.3) as follows:

N(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′g(τ)N(τ)dτ

≤ e−ρ0tN(0) +
∫ t

0
e−ρ0(t−τ)g(τ)N(τ)dτ ≤ e−ρ0tN(0)

+
∫ t

0
e−ρ0(t−τ)g(τ)N(τ)dτ ; ∀t(≥ tα) ∈ R0+,

(B.5)

where

g(t) :=
λ(t) − γ(t)ρ(t)I(t)

N(t)
≤ λ(t) − γ(t)ρ(t)I(t)

ε
≤ g(t) := λ(t) − γ(t)ρ(t)I(t); ∀t(≥ tα) ∈ R0+

(B.6)

provided that N(t) ≥ ε ≥ 1 and g(t) = g(t) = 0 if 0 = I(t) = N(t) < 1 − ε0, for some real
constant ε0 ∈ (0, 1], since then λ(t) = 0 by hypothesis. Define Na(t) := eρ0tN(t) leading to

Na(t) ≤ N(0) +
∫ t

0
g(τ)Na(τ)dτ. (B.7)

Then, Gronwall’s lemma yields after using (B.7) that Na(t) ≤ N(0)e
∫ t
0 g(τ)dτ so that

N(t) ≤ e−(ρ0t−
∫ t
0(λ(τ)−γ(τ)ρ(τ)I(τ))dτ)N(0); ∀t ∈ R0+, (B.8)

which is bounded for all time provided that

∫ t

0

(
μ(τ) − ν(τ)

)
dτ ≥ ρ0t ≥

∫ t

0

(
λ(τ) − γ(τ)ρ(τ)I(τ)

)
dτ ; ∀t(≥ tα) ∈ R0+. (B.9)

Furthermore, N(t) converges exponentially to zero if the second constraint is strict within
some subinterval of [tα,∞) of infinite Lebesgue measure.
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Proof of Assertion 1. The unique solution of (4.1) for given initial conditions and vaccination
function is calculated by an analogous expression to (3.3)with the replacements μ(t)−ν(t) →
μ(t), N(t) → E(t)+ I(t)+R(t), and λ(t)− γ(t)ρ(t)I(t) → V (t)+V δ(t)−uEIR(t) for the forcing
terms, for all t ∈ R0+. Note for any t ∈ R0+ that

S(t) ≥ 0 ⇐⇒ E(t) + I(t) + R(t) = N(t) − S(t)

= e−
∫ t
0 μ(τ)dτ(N(0) − S(0)) +

∫ t

0
e−

∫ t
τ μ(τ

′)dτ ′
(
V (τ) + V δ(τ) − uEIR(τ)

)
dτ ≤ N(t).

(B.10)

Substituting in the above equation the solution (3.3) ofN(t) and the equalityE(t)+I(t)+R(t) =
N(t) − S(t), for all t ∈ R0+ for any initial conditions E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, for all t ∈
[−h, 0], it follows that S(t) ≥ 0, for all t ∈ R0+ for any S(0) ≥ 0 and S(t) = 0, for all t ∈ R− if
and only if (4.3) holds.

Proof of Assertion 2. It follows from the solution (3.3) for the total population and the solution
of (4.4) ofN(t)−E(t) = S(t)+ I(t)+R(t), for all t ∈ R0+, which is obtained in a similar way as
(3.3) by replacingN(t) → S(t)+I(t)+R(t) and λ(t)−γ(t)ρ(t)I(t) → λ(t)−γ(t)ρ(t)I(t)−uSIR(t),
under any initial conditions S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, for all t ∈ [−h, 0], it follows directly
that

E(t) ≥ 0 ⇐⇒ S(t) + I(t) + R(t)

= e
∫ t
0(ν(τ)−μ(τ))dτ(S(0) + I(0) + R(0))

+
∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ) − uSIR(τ)
)
dτ

= e
∫ t
0(ν(τ)−μ(τ))dτ(N(0) − E(0)) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ) − uSIR(τ)
)
dτ

≤ N(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ)
)
dτ,

(B.11)

for any t ∈ R0+ and it follows that E(t) ≥ 0, for all t ∈ R0+ for any E(0) ≥ 0 and E(t) =
0; for all t ∈ R− which holds if and only if (4.6) holds, for all t ∈ R0+.

Proof of Assertion 3. From the solution (3.3) for the total population and the solution of (4.7)
ofN(t)−I(t) = S(t)+E(t)+R(t), for all t ∈ R0+, which is obtained in a similar way as (3.3) by
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replacingN(t) → S(t)+E(t)+R(t) and λ(t)−γ(t)ρ(t)I(t) → λ(t)−γ(t)ρ(t)I(t)−uSER(t), under
any initial conditions S(t) ≥ 0, E(t) ≥ 0, R(t) ≥ 0, for all t ∈ [−h, 0], it follows directly that

I(t) ≥ 0 ⇐⇒ S(t) + E(t) + R(t)

= e
∫ t
0(ν(τ)−μ(τ))dτ(S(0) + E(0) + R(0))

+
∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ) − uSER(τ)
)
dτ

= e
∫ t
0(ν(τ)−μ(τ))dτ(N(0) − I(0))

+
∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ) − uSER(τ)
)
dτ

≤ N(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0)

+
∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ)
)
dτ,

(B.12)

for any t ∈ R0+ and it follows that I(t) ≥ 0, for all t ∈ R0+ for any I(0) ≥ 0 and I(t) =
0, for all t ∈ R− which holds if and only if (4.9) holds, for all t ∈ R0+.

Proof of Assertion 4. Note that R(t) ≥ 0 ⇔ S(t) + E(t) + I(t) ≤ N(t), for all t ∈ R0+. From (3.3)
and the solution of (4.10) for any initial conditions S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, for all t ∈
[−h, 0], it follows that the above inequality holds if and only if

e
∫ t
0(ν(τ)−μ(τ))dτ(S(0) + E(0) + I(0))

+
∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′
(
λ(τ) − γ(τ)ρ(τ)I(τ) − uSEI(τ) − V (τ) − V δ(τ)

)
dτ

= e
∫ t
0(ν(τ)−μ(τ))dτ(N(0) − R(0))

+
∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′
(
λ(τ) − γ(τ)ρ(τ)I(τ) − uSEI(τ) − V (τ) − V δ(τ)

)
dτ

≤ N(t) = e
∫ t
0(ν(τ)−μ(τ))dτN(0) +

∫ t

0
e
∫ t
τ (ν(τ

′)−μ(τ ′))dτ ′(λ(τ) − γ(τ)ρ(τ)I(τ)
)
dτ,

(B.13)

so that R(t) ≥ 0, for all t ∈ R0+ for any R(0) ≥ 0 and R(t) = 0, for all t ∈ R− if and only if
(4.12) holds, for all t ∈ R0+.

Proof of Assertion 5. (a) If t ∈ IMP and Vθ(t) ≤ 1/(ν(t)g(t)), then S(t) > 0 ⇒ S(t+) = (1 −
ν(t)g(t)Vθ(t))S(t) ≥ 0 from (2.1).

If t ∈ IMP, then S(t) = 0 ⇔ S(t+) = S(t) = 0. Sufficiency of Conditions (a) has been
proven. (b)Assume that t ∈ R0+\IMP. Then, S(t) = 0∧Ṡ(t) > 0 ⇒ S(t+ε) ≥ 0, for all ε ∈ (0, ε∗)
for some sufficiently small ε∗ ∈ R+. Also, S(t) = 0 ∧ Ṡ(t + ε) ≥ 0, for all ε ∈ [0, ε) ⇒ S(t′) ≥
0, for all t′ ∈ (t, t + ε) for some sufficiently small ε ∈ R+. As a result, S(t) = 0 ⇒ S(t + ε) ≥ 0
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for some interval of time of nonzero measure and this conclusion result can be extended to
the whole R0+ by the continuity of the solution of (2.1)–(2.5) for any set of admissible initial
conditions. Sufficiency of Conditions (a)–(b) has been proven. Necessity follows directly by
contradiction as follows. Assume that (a) fails for some t ∈ IMP or (b) fails for some t ∈
R0+ \ IMP. Then,

[(
Vθ(t) >

1
ν(t)g(t)

∧ S(t) > 0 some t ∈ IMP
)

=⇒ S(t+) < 0
]

∨
[(

S(t) = 0 ∧ λ(t) +ω(t)R(t) + ν(t)N(t)

(
1 −

q∑
i=1

∫ t−hV i(t)

t−hV i(t)−h′
V i(t)

fV i(τ, t)V (t)dτ

)

−∣∣η(t)∣∣ < 0 some t ∈ R0+ \ IMP

)
=⇒ S

(
t′
)
< 0 for some R+ � t′ > t

]
.

(B.14)

Proof of Assertion 6. Since E(t) ≥ 0, for all t ∈ [−h, 0] and E : R0+ → R is continuous, it
suffices to prove that if [t, t + ε∗) for some t ∈ R0+ then E(t + ε) ≥ 0, for all ε ∈ [0, ε∗) for some
sufficiently small ε∗ ∈ R+. This holds from (2.2) if and only if either Ė(t) > 0 (guaranteed
by the first part of the logic “or” of (4.14), or Ė(t) ≥ 0 on some interval (t, t + ε) of nonzero
measure, guaranteed by the second part of the logic “or” of (4.14), that is, if (4.14) holds.
Then, E(t + τ) ≥ 0 for τ ∈ [0, τ0), some τ0 ∈ R+. The necessity follows by contradiction since
E(t) = 0 and Ė(t) < 0 on some interval (t, t + ε) of nonzero measure implies the existence of
R+ � t′ > t such that E(t′) < 0.

Outline of Proof of Assertion 7

Similar to the proof of Assertion 6 by using (2.3) with I(t) ≥ 0 and replacing E(t) → I(t).
This guarantees İ(t) > 0 at a time instant t or İ(t) ≥ 0 within an open interval containing t if
I(t) = 0. Then, I(t) is nonnegative for some interval (t, t + ε) if (4.15).

Outline of Proof of Assertion 8

Similar to the proof of Assertion 6 by using (2.4) with R(t) ≥ 0 and replacing E(t) → R(t).
This guarantees Ṙ(t) > 0 at a time instant t or Ṙ(t) ≥ 0 within an open interval containing
t if R(t) = 0. Then, R(t) is nonnegative for some interval (t, t + ε) if (4.16) holds for the
given regular vaccination rule. Also, R(t+) is always nonnegative since R(t+) ≥ R(t) for any
impulsive vaccination law (see (B.22) in Appendix B).

Proof of Assertion 9. Since S(0) > 0, R(0) = ϕR(0) = N(0) − S(0) ≥ 0, Ė(0) = uE(0) +
|η(0)| > 0, İ(0) = uI(0) − uE(0) > I(0) = 0, and 0 /∈ IMP, it exist from continuity
arguments TI ∈ R+ such that S(t) > 0, E(t) > 0, I(t) > 0, for all t ∈ (0, TI] and S(t) ≥
0, E(t) ≥ 0, I(t) ≥ 0, for all t ∈ [0, TI] and [0, TI] ∩ IMP = ∅. All the partial populations of
susceptible, infected and infectious are upper bounded by N(t), for all t ∈ [0, TI] since they
are nonnegative provided that R(t) is nonnegative; for all t ∈ [0, TI]. It remains to prove that
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R(t) ≥ 0, for all t ∈ (0, TI]. It follows directly by directly calculating the unique solution of
(2.4) on [0, TI] for each given set of admissible initial conditions as follows:

R(t+) = R(t) + ν(t)g(ti)Vθ(t)S(t)

≥ R(t) = e−
∫ t
0(μ(τ)+ω(τ))dτR(0) +

∫ t

0
e−

∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′(γ(τ)(1 − ρ(τ)
)
I(τ) − uI(τ)

)
dτ

+
∫ t

0
e−

∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′ν(τ)N(τ)

(
q∑
i=1

∫ τ−hV i(τ)

τ−hV i(τ)−h′
V i(τ)

fV i

(
τ ′, τ

)
V (τ)dτ ′

)
dτ

+
∫ t

0
e−

∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′ β(τ − hE(τ) − hI(τ))kI(τ − hE(τ) − hI(τ))
N(τ − hE(τ) − hI(τ))

× S(τ − hE(τ) − hI(τ))I(τ − hE(τ) − hI(τ))dτ

+
∑

ti∈IMP(t)

ν(ti)g(ti)Vθ(ti)S(ti)
(
e
− ∫ t

ti
(μ(τ ′)+ω(τ ′))dτ ′

)

≥
∫ t

0
e
∫τ
0 (μ(τ

′)+ω(τ ′))dτ ′(γ(t − τ)
(
1 − ρ(t − τ)

)
I(t − τ) − uI(t − τ)

)
dτ

≥
∫ t

0
γ(t − τ)

(
1 − ρ(t − τ)

)
I(t − τ) − uI(t − τ)dτ ≥ 0; ∀t ∈ [0, TI],

(B.15)

since all the coefficient functions which parameterize the SEIR model (2.1)–(2.5) and all the
delay functions are bounded and either everywhere piecewise continuous or continuous on
R0+, where IMP(t) := {ti ∈ IMP : ti < t} ⊂ IMP(t+) ⊂ IMP is the set of impulsive time instants
up till time t. The above expression follows from (2.4) in a direct, but involved, way by taking
into account the following facts:

(a) IMP(t) ⊂ MP(t+) with IMP(t) ≡ MP(t+) if and only if t ∈ IMP,

(b) the solutions of (2.4) are calculated as the homogeneous solution plus the forced
one for each given initial conditions in the same way as it has been made before to
obtain (3.3) from (3.1) for the total population with the replacements (ν(t)−μ(t)) →
(μ(t) +ω(t)) and the former forcing function by their current counterpart,

(c) the solution of the forced part of the solution associated with the impulsive actions
is calculated as follows R(t+) = R(t) + ν(t)g(t)Vθ(t)S(t), and

∑
ti∈IMP(t)

(
ν(ti)g(ti)Vθ(ti)S(ti)

) ∫ t

0
e−

∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′dτ

=
∑

ti∈IMP(t)

ν(ti)g(ti)Vθ(ti)S(ti)
(
e
− ∫ t

ti
(μ(τ ′)+ω(τ ′))dτ ′

)
.

(B.16)
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Outline of Proof of Assertion 10

The constraint E(0) < (uE(0) + |η(0)|)/(μ(0) +σ(0)) together with the remaining valid ones of
Assertion 9 imply Ė(0) > 0 from (2.2) so that the proof of Assertion 9 remains valid.

The following result gives conditions for the impulsive-free vaccination SEIR model
(2.1)–(2.5) to be a positive dynamic system in the sense that any solution is nonnegative for all
time under bounded absolutely continuous initial conditions ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+,
eventually subject to a set of isolated bounded discontinuities.

Proof of Theorem 4.3. Several cases can occur, namely the following.

Case 1. Assume that {t ∈ R0+ : S(t)E(t)I(t)R(t) = 0} = ∅ so that t∗ := min(t ∈
R0+ : S(t)E(t)I(t)R(t) = 0) does not exist. Since the unique solution of (2.1)–(2.4),
subject to (2.5), is continuous on R0+ for each admissible set of initial conditions
ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+, it follows that inft∈R0+ min(S(t), E(t), I(t), R(t)) ≥ 0 and
lim inft→+∞(min(S(t), E(t), I(t), R(t))) ≥ 0. As a result, all the populations of the SEIR model
(2.1)–(2.5) are nonnegative for all time and the result is proved for this case.

Assume that t∗ := min(t ∈ R0+ : S(t)E(t)I(t)R(t) = 0) exists with min(t ∈ R0+ :
S(t)E(t)I(t)R(t) ≥ 0), for all t ∈ [0, t∗)with the following potentially possible included cases.

Case 2. S(t∗) = 0, S(t) ≥ 0, for all t ∈ [0, t∗), inft∈[0,t∗] min(E(t), I(t), R(t)) ≥ 0, Then, from
(2.1), Assumption 1 and the above given hypotheses,

Ṡ(t∗) = λ(t∗) +ω(t∗)R(t∗) + ν(t∗)N(t∗)

×
(
1 −

q∑
i=1

∫ t−hV i(t∗)

t−hV i(t∗)−h′
V i(t

∗)
fV i(τ, t∗)V (t∗)dτ

)
− ∣∣η(t∗)∣∣ ≥ ω(t∗)R(t∗) ≥ 0,

(B.17)

since 0 ≤ Supt∈clR0+
V (t) ≤ 1, λ(t) ≥ |η(t)|, and inft∈[0,t∗] min(E(t), I(t), R(t)) ≥ 0, for all t ∈

R0+. Then, S(t) ≥ 0, for all t ∈ [t∗, t∗ + Δt∗S) for some Δt∗S = Δt∗S(t
∗) ∈ R+ and hence S(t) ≥

0; for all t ∈ R0+ by constructively extending the above reasoning to decompose R0+ as a
disjoint union of real positive intervals of nonzero bounded measures, that is, Condition (b)
of Assertion 5 is guaranteed provided that inft∈[0,t∗] min(E(t), I(t), R(t)) ≥ 0.

Case 3. E(t∗) = 0, E(t) ≥ 0, for all t ∈ [0, t∗), inft∈[0,t∗] min(S(t), I(t), R(t)) ≥ 0. One gets from
(2.2)

Ė(t∗) =
β(t∗)S(t∗)
N(t∗)

(
p∑
i=1

∫hi(t∗)

0
fi(τ, t∗)I(t∗ − τ)dτ

)

− β(t∗ − hE(t∗))kE(t∗ − hE(t∗))
N(t∗ − hE(t∗))

S(t∗ − hE(t∗))I(t∗ − hE(t∗))

+ uE(t∗) +
∣∣η(t∗)∣∣ ≥ 0; ∀t ∈ [

t∗, t∗ + Δt∗E
)
,

(B.18)

and some Δ t∗E = Δ t∗E (t∗) ∈ R+ if and only if (4.14) holds, that is, if and only if Assertion 6
holds so that E(t) ≥ 0, for all t ∈ [t∗, t∗+Δt∗E). Then, E(t) ≥ 0, for all t ∈ [0, t∗+Δt∗E) provided
that inft∈[0,t∗] min(S(t), I(t), R(t)) ≥ 0.
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Case 4. I(t∗) = 0, I(t) ≥ 0, for all t ∈ [0, t∗), inft∈[0,t∗] min(S(t), E(t), R(t)) ≥ 0. If Condition
(4.15) holds for t = t∗, then Assertion 7 holds and I(t) ≥ 0, for all t ∈ [0, t∗ + Δt∗I) for some
Δt∗I = Δt∗I(t

∗) ∈ R+.

Case 5. R(t∗) = 0, R(t) ≥ 0, for all t ∈ [0, t∗), inft∈[0,t∗] min(S(t), E(t), I(t)) ≥ 0. If the
impulsive vaccination function is null and Condition (4.16) holds for t = t∗, then Assertion 8
holds and R(t) ≥ 0, for all t ∈ [0, t∗ + Δt∗R) for any positive continuous vaccination law
V : R0+ → R0+ for some Δt∗R = Δt∗R(t

∗) ∈ R+.

Proof of Assertion 11. Replace E(t) ≡ E∗(t) given by (5.1) in (2.3), for all t ∈ R+ with
ϕS, ϕE, ϕI , ϕR : [−h, 0] → R0+ subject to ϕ∗

I(t) = ϕI(t), for all t ∈ [−h, 0]. Then, I(t) ≡ I∗(t)
on R+ and satisfies (2.3), for all t ∈ R0+. Assume on the contrary that it exists a time instant
t ∈ R0+ such that I(t)/= I∗(t). Since I(t), S(t), and E(t) are everywhere continuous in R0+, it
exists an open real interval Ωt := (t − ς, t + ξ) containing t such that E(t) + I(t)/=E∗(t) + I∗(t)
for a given susceptible trajectory S(t) in such an interval satisfying (2.1) since one gets by
summing-up both sides of (2.2)-(2.3) that the combined infected-infectious trajectory satisfies
the differential equation

Ė(t) + İ(t) = −μ(t)(E(t) + I(t)) +
β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)
− γ(t)I(t) +

∣∣η(t)∣∣

− β(t − hE(t) − hI(t))kI(t − hE(t) − hI(t))
N(t − hE(t) − hI(t))

S(t − hE(t) − hI(t))

× I(t − hE(t) − hI(t)) + uI(t),
(B.19)

whose solution in R0+ is unique for given initial conditions and forcing function. Thus,
E∗ /=E(t) in Ωt which leads to a contradiction.

Proof of Assertion 12. First, note that under the given differentiability constraints of the
parameterizing functions E∗ : [−h, 0] ∪ R+ → R0+, defined by (5.1), fulfills in addition
E∗ ∈ PC(1)(R0+,R). Then, the infected population trajectory given by the expression

Ė(t) =
β(t)S(t)
N(t)

(
p∑
i=1

∫hi(t)

0
fi(τ, t)I(t − τ)dτ

)
− β(t − hE(t))kE(t − hE(t))

N(t − hE(t))

× S(t − hE(t))I(t − hE(t)) −
(
μ(t) + σ(t)

)
E(t) + uE(t) − η(t),

(B.20)

for all t ∈ R0+. Take (B.20) for I(t) ≡ I∗(t), provided that the prefixed I∗ : [−h, 0] ∪ R+ → R0+

in Assertion 11 satisfies I∗ ∈ PC(1)(R0+,R) and E(t) ≡ E∗(t) is calculated from (5.1) in
Assertion 11, for all t ∈ R+ under given initial conditions ϕS, ϕ

∗
E = ϕE, ϕ

∗
I = ϕI, ϕR : [−h, 0] →

R0+, with σ, (μ + γ), (βkE), (uE − uI) ∈ PC(0)(R0+,R) what implies that E∗ ∈ PC(1)(R0+,R).
Then, (B.20) becomes equivalently S(t) = S∗(t), for all t ∈ R+ with the suited reference
infected population differential equation satisfying (2.2) by construction.
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Proof of Assertion 13. First, note that E∗, S∗ : [−h, 0] ∪ R+ → R0+, defined by (5.1) and (5.3),
respectively, fulfill E∗ ∈ PC(1)(R0+,R) and S∗ ∈ PC(1)(R0+,R). The vaccination law (5.5)-(5.6)
makes the immune reference trajectory (5.7)-(5.8) to be identical to the solution of (2.4)which
is obtained in a similar way as (3.3) has been obtained from (3.1) for the total population by
decomposing it in the solution of the homogeneous equation plus the solution of the forced
part. A correcting term for the solution is added for the impulsive vaccination at impulsive
time instants (see (A.7)-(A.8) in Appendix A). This leads to

R(t) = e
− ∫ t

ti
(μ(τ)+ω(τ))dτ

R
(
t+i
)
+
∫ t

ti

e−
∫ t
τ (μ(τ

′)+ω(τ ′))dτ ′

×
[
γ(τ)

(
1 − ρ(τ)

)
I(τ) − uI(τ) + ν(τ)N(τ)

(
q∑
i=1

∫ τ−hV i(τ)

τ−hV i(τ)−h′
V i(τ)

fV i

(
τ ′, τ

)
V (τ)dτ ′

)

+
β(τ − hE(τ) − hI(τ))kI(τ − hE(τ) − hI(τ))

N(τ − hE(τ) − hI(τ))

×S(τ − hE(τ) − hI(τ))I(τ − hE(τ) − hI(τ))

]
dτ ;

∀t ∈ [ti, ti+1), ∀ti, ti+1 ∈ IMP such that (ti, ti+1) ∩ IMP = ∅,
(B.21)

R(t+) = R(t) + ν(t)g(t)Vθ(t)S(t); ∀t ∈ IMP, (B.22)

under the same initial conditions ϕ∗
S ≡ ϕS, ϕ

∗
E ≡ ϕE, ϕ

∗
I ≡ ϕI, ϕ

∗
R ≡ ϕR : [−h, 0] → R0+ with

N∗ : R+ → R0+ being given by (5.2) after using Assertions 11-12.

Proof of Theorem 5.1. The vaccination law (5.5)-(5.6) makes the immune population to track
the reference one which is the unique solution of (2.4) for a given set of admissible functions
of initial conditions. This one is achievable for all time by the reference susceptible population
which is achievable for all time by the reference infected one (Assertions 12-13) while
satisfying the differential equations (2.3), (2.4), and (2.1). The infected reference sequence
is achieved by the reference infectious one for all time (Assertion 11) while satisfying the
differential equation (2.2). The proof is complete from Picard-Lindeloff theorem for existence
and uniqueness of the solution of (2.1)–(2.5) for each set of admissible functions of initial
conditions.
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