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Abstract: In a classical random walk model, a walker moves through a deterministic d-dimensional
integer lattice in one step at a time, without drifting in any direction. In a more advanced setting, a
walker randomly moves over a randomly configured (non equidistant) lattice jumping a random
number of steps. In some further variants, there is a limited access walker’s moves. That is, the
walker’s movements are not available in real time. Instead, the observations are limited to some
random epochs resulting in a delayed information about the real-time position of the walker, its
escape time, and location outside a bounded subset of the real space. In this case we target the virtual
first passage (or escape) time. Thus, unlike standard random walk problems, rather than crossing
the boundary, we deal with the walker’s escape location arbitrarily distant from the boundary. In
this paper, we give a short historical background on random walk, discuss various directions in the
development of random walk theory, and survey most of our results obtained in the last 25–30 years,
including the very recent ones dated 2020–21. Among different applications of such random walks,
we discuss stock markets, stochastic networks, games, and queueing.

Keywords: random walk; random lattice; first passage time; virtual first passage time; escape
location; virtual escape location; fluctuation analysis; Lévy process; recurrent process; marked
random measures; position dependent marking; stochastic games; queueing; stochastic finance;
stochastic networks

In a classical random walk model, a particle or walker moves through a deterministic
d-dimensional integer lattice. The walk is random without drifting in any direction. The
particle’s steps are also associated with time units as in the case that leads to Brownian
motion. Of interest is the first passage time, that is, when the particle escapes from a
bounded set.

There have been many variants of the random walk in the literature. The one we
introduce is with a walker randomly moving over a lattice with a random real-valued
configuration, equidistant, and formed at random times. The first passage time of such a
walker and the location upon its escape is our focus.

In a further embellishment, we allow the particle to move through a random lattice
not one step at a time as in the general setting, but to jump a random number of steps. In
some other variants, we also allow only a limited access to the moves of the walker. That is,
the walker’s movements are not available in real time. Instead, the observations are limited
to some random epochs, τ1, τ2, τ3, . . .. Consequently, we deal with delayed information
on the real-time position A(t) of the particle and upon its escape at τν (ν is the escape
index)—the virtual first passage time and virtual escape location at A(τν)—that may end
up being arbitrarily distant from the boundary of an underlying set. Obviously the virtual
first passage time τν is delayed compared to the real first passage time.

On the other hand, in most of our settings, we restrict the walker’s moves only in
positive directions. Additionally, the set that the particle is to escape is a d-dimensional
rectangle, rather than an arbitrary manifold.

We note that our work on random walk models pertain to two distinct problems. In
the first one, we work on the joint distribution of the first passage time tν and the first
escape location A(tν), where t1, t2, . . . are the real-time epochs of walker’s jumps, with no
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relationship between time tν and the deterministic time interval [0, t], thus referred to as
time insensitive. In the second problem, the first passage time tν (or virtual first passage
time τν) can be placed inside [0, t] or outside the interval and considered along with the
real-time position A(t) of the particle at time t. The second problem is more complex and
it is called time sensitive.

We give a short historical background on random walk, discuss various directions in
the development of random walk theory, and survey most of our results obtained in the last
25–30 years, including the very recent ones dated 2020–21. Among different applications of
such random walks, we discuss stock markets, stochastic networks, games, and queueing.

1. Introduction

The term “random walk” was first introduced in [1] by Karl Pearson in 1905. It is
generally considered as a recurrent process Sn = X1 + . . .+Xn made of a sequence of
iid Zd-valued r.v.’s X = {X1,X2, . . . .} In its simple form, Xi ∈ [X] and X is uniformly
distributed on {−1, 1}d, such that if Sn = x∈ Zd, the particle or walker moves from state
x to state y within the integer hypercube x+{−1, 1}d equally likely in any direction with
probability 1

2d . So here the walker moves randomly within the d-dimensional integer lattice.
One of the key objectives is to find the probability distribution of r.v.’s ν = inf{n : Sn ∈ Ac}
and Sν, where A is a bounded subset of Zd. That is, the position of the walker when it
escapes from set A.

If we allow X to be Rd-valued and arbitrarily distributed with the entries (X1, . . . , Xd)
of X not independent as assumed above, then such random walk is largely embellished.
Here we can think of a randomly generated grid replacing Zd, so that if Sn = x∈ Rd,
the walker moves from state x to state y according to random increment Xn ∈ [X] (the
equivalence class of all r.v.’s a.s. equal X) and it turns out that the grid along which the
particle moves is randomly generated each time the walker lands at some x. Further-
more, we take into account the time that the walker takes to move from x to y in one step
thereby forming a point process T = {t1, t2, . . .} and the associated marked point process
S = ∑∞

n=0Xnεtn (εα is the unit measure at point a). The escape parameters of such
random walk now require more specifications. If A is a bounded subset of Rd, then
ν = inf{n : Sn ∈ Ac} (exit index), tν is the first passage time or escape time, and Sν is the
position of the walker on its escape (escape position).

It is a challenge to find the distributions (joint or marginal) of the above random
entities in a closed form. The assumption on X to be Rd

+-valued is helpful and still enough
practical. The random walk terminology is appropriate to describe the physical motion
of a walker regardless of where the walker moves, although other descriptive terms like
a marked point process or marked random measure or recurrent or renewal process are
also common in the literature. Furthermore, the additive components or jumps Xi’s of S
need not be iid and can form Markov or semi-Markov processes, although these classes of
S are out of scope and interest of this paper that targets only cases that lead to analytically
closed forms.

Besides the terms walker or particle applied to a moving object, some authors also use
the terms like a random walk itself that walks. We note that X can also be integer-valued,
whereas we retain all other assumptions on S . Then if the walker at step n at time tn lands
at some Sn = X0 + . . .+Xn, then at time tn+1, the walker moves to state Sn+1 = Sn+Xn+1,
where Xn+1 is a Zd

+-valued r.v. that generates a path on Zd
+ running in all non-negative

directions from Sn.
There is a way to at least partially circumvent the obstacle of mixed jumps(or incre-

ments), rather than just non-negative that we intend to discuss alittle later in this paper,
but for now we stay with the above assumptions.With non-negative increments, the rep-
resentation S = ∑∞

n=0Xnεtn of an underlying random walk is an atomic random measure
that is often a convenient alternative interpretation.
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Related Literature

There are myriads of papers on random walk and applications that would make a
very long list. As the result of such wealth and efforts by many from different branches of
mathematics and other disciplines, there is no unity about similar notions and notations.
First of all, there is an ambiguity about what a random walk is as oppose to what is not.
This is because of various embellishments to the original notion of a random walk as a
recurrent process, that is, a sequence {Sn} of partial sums of a sequence {X0, X1, . . .} of iid
r.v.’s. Note that if Xi’s are non-negative, then {Sn} is referred to as a renewal process. If
Xi’s are real-valued, {Sn} is recurrent (cf. Takács [2]).

Now and then we read about constructions like semi-Markov random walks, that is,
{Sn} is a semi-Markov process (cf. Unver et al. [3]). Another embellishment which we
believe is fully legitimate, is when the walker jumps occur upon random points {tn} that
make the analysis of escape parameters more challenging. In addition, the jump length
Xn’s can be position dependent, that is when Xn depends on tn − tn−1 only, n = 1, 2, . . ., i.e.,
the time since the previous jump. Now because very often, one is concerned about escape
of a random walk from a bounded set, the underlying analysis of the escape is referred to
fluctuations of sums of random variables. However, the “sums” are not always a traditional
random walk with independent jumps (cf. Andersen [4,5]). Besides, the fluctuations are
also mentioned in reference to processes with continuous paths like Brownian motion and
here the escape from a set A means crossing its boundary with a location next to A. The
latter differs from leaving A and landing at a point distant from A as it takes place under
non simple random walk. Hence, to include certain work in the literature we will use the
common sense and space constraints.

The first mention of random walk was made by Pearson [1] in 1905 characterizing
the distribution of the distance traveled in an N-step random walk in the plane. The walk
starts at (0, 0) and involve N steps of unit length, each taken in a equally likely random
direction. In reference to Pearson, the problem was posted by Rayleigh [6] also in 1905 who
claimed that the random walk problem proposed by Pearson was the same as that of the
composition of N iso-periodic vibrations of unit amplitude and of phases distributed at
random and studied in his earlier papers.

There are two seminal articles by Andersen [4,5] that belong to the literature on
fluctuations, but they deal with sums of not independent r.v.’s. Yet it is worth including
them in the reference list. Takćs [2,7,8] had been a key prolific contributor to the fluctuations
of sums of random variables, some of which are traditional random walks and some are
embellished variants, cf. Dshalalow and Syski [9] about Takács’ work. Some random walk
problems pertain to exit and return to a fixed set. Van den Berg [10], obtained estimates for
the “average probability” that a simple random walk in Zd starting at a point x ∈ V exits
V and then returns to x. The average is taken over all points x ∈ V. Paper [11] studied the
asymptotic behavior of the probability P{ν = n}, as n→ ∞, where ν =inf{k > 0 : Sk ≥ y}
for some y ≥ 0 and Sk = ∑k

j=1 Xj is a recurrent process.
Becker and König [12] studied a random walk in Zd targeting local times defined as

l(n, x) = ∑n
k=0 1{Sk=x}, n ∈ N, giving the number of visits of x∈ Zd at step n and the large-n

asymptotics of the functional

Ln(α) = ∑
x∈Zd

l(n, x)α, α ≥ 0.

Csáki, Földes, and Révész [13] studied the maximal local time l(n) =

max
{

l(n, x) : x ∈ Zd
}

in a simple symmetric walk in Zd, i.e., with P{X1 = ei} =

P{X1 = −ei} = (2d)−1. Gluck [14] studied a random walk on a finite group G based
on a generating set that is a union of conjugacy classes. Let the non-negative integer valued
random variable T denote the first time the walk arrives at the identity element 1 of G, if
the starting point of the walk is uniformly distributed on G. Under suitable hypotheses,
the author shows that the distribution function F of T is almost exponential. Other work
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on random walks on groups are by Fayolle, Iasnogorodski, and Malyshev [15], Gluck [14],
Hildebrand [16], and Takács [7].

A continuous time random walk (CTRW) process was introduced in 1965’s paper
by the physicists Montroll and Weiss [17]. A CTRW can be defined as follows. Let
S = ∑∞

n=0Xnεtn (εα is the unit measure at point a) be a marked signed random measure.
Suppose X0,X1,X2, . . . are independent and for n = 1, 2, . . . , identically distributed r.v.’s
valued in Rd while T = ∑∞

n=0 εtn is the associated support counting measure. Thus,
Nt = T [0, t] is the associated counting process. Then, the CTRW is S(t) = S [0, t]. The
inter-renewal times t1 − t0, t2 − t1, . . . are referred to as waiting times. If S is with position
independent marking, then S(t) is called decoupled. A coupled CTRW is S(t) such that S
is with position dependent marking, that is Xn depends on tn − tn−1. The marks Xn’s are
called jumps and in physics, they represent instantaneous jumps of a diffusing walker. (A
so-called CTRW characteristic function pertains to fractional diffusion equations.) CTRW’s
find applications in physics, insurance, and finance. The literature on CTRW’s is contained
within its own terminology distinct from that in on random walks. It needs more scrutiny
to see one and the same notions. See interesting surveys in Kutner and Masoliver [18] and
Scalas [19]. See Balakrishnan and Khantha paper about the first passage time in CTRW [20].

We only briefly mention random walks on graphs. In its basic form, finite Markov
chains are random walks on weighted directed graphs with possible loops. An electrical
network is a multigraph G = (V, E) and with a weight function r : E→ R+ representing
the resistance of the edges. Other notable applications on random walks on graphs are
random walks on social graphs. See related work in Blanchard and Volchenkov [21],
Brémaud [22], Fujie and Zhang [23], Sarkar and Moore [24], Shi [25], Takács [8], and
Telcs [26].

Random walks in queueing is a very notable subset of the entire literature on random
walks. They picked up their notions very early on and found very close connections to
various processes in queueing systems, including queueing, waiting times, departures and
other processes. The interest in random walks in queueing surged in the 80’s and 90’s
and ever since led to independent developments. Back then, very popular queues were
those with N-, D-, and T-policies that carried random walk, later on joined by maintenance
and vacation disciplines. Most of them required closed form expressions that led to novel
analysis of random walks. e.g., in queues under N-policy, when the queue is exhausted,
the server rests until the new customers joining the waiting room will cross a positive
number N. The problem becomes less trivial if the input stream bulk (that is, when it is a
marked point process). If the server goes on maintenance (also referred to as vacations),
he is absent from the system and cannot resume his service immediately, once the queue
crosses N, because he cannot interrupt any individual vacation segment. So he does it on a
first opportune time. The problem of finding the first passage time (in this case it is when
the server resumes his service) and the queue level accumulated by then became a target
of numerous work, including Abolnikov and Dshalalow [27–30], Abolnikov, Dshalalow,
and Agarwal [31], Abolnikov, Dshalalow, and Dukhovny [32–34], Dshalalow [35–40],
Dshalalow and Motir [41], Dshalalow and Russell [42], and Dshalalow and Yellen [43].
Now with the D-policy, the server resumes his service, when the total service needed to
process certain amount of jobs exceeds a positive real D. See Agarwal and Dshalalow [44].
In all these papers, explicit joint functionals of the first passage time and the position of the
queue upon the passage were obtained. The cited results in closed forms were possible
through the introduction and implementation of the so-called D-operator (see Section 2),
specifically designed to deal with escape parameters of random walks.

A further embellishment of the named above queues is those with hysteretic control.
This is when the server suspends his service upon of the service completions, when the
queue level drops below some r and resumes his service when the queue accumulates to
N or more customers. Here r ≤ N. During his primary inactivity, the server may rest or
go on multiple vacations, or combine a single vacation with a followed rest if the queue
has not reached N on his return. A closed form expression for the joint distribution of
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the first passage time and the queue level at the passage we obtained in Abolnikov, Dsha-
lalow, and Treerattrakoon [45], Dshalalow [46], Dshalalow and Dikong [47,48], Dshalalow,
Kim, and Tadj [49] in different variants of hysteretic control policy. In some cases, batch
(group) service took place that added to the existing complexity of the underlying random
walk problems.

Bacot and Dshalalow [50] in 2001 considered a further embellishment of the hysteretic
control random walks by including a so-called gated service. This was a bulk-input-batch-
service queue with multiple vacation policy and hysteretic control. The gated service
applies to the policy when the service consists of two phases. The server takes a batch
of customers during the first phase and if all available customers joined the batch that
is of a lesser size than server’s capacity, then newly arriving customers can join the first
batch (not in excess to server’s capacity), but during the second phase, such an option is
no longer honored even if server’s capacity has not been filled. All related random walk
problems pertaining to the joint distribution of all key escape parameters in the context of
the queueing process was obtained. In this particular problem, the authors chained the
results obtained during vacations and the first phase.

The utility and versatility of the D-operator enabled us to enlarge classes of random
walk problems that could be identified in stochastic games, stochastic networks, queueing,
and economics. In queueing, we take advantage of multidimensional versions of the
D-operator to analyze queues with parallel queueing stations or servicing facilities where
one server can perform simultaneous and yet asynchronous work on more than one task at
the same time, as per studies in Abolnikov, Dshalalow, and Agarwal [31], Dshalalow and
Merie [51], and Dshalalow, Merie, and White [52].

Further utility of the D-operator in random walk is found in its chaining property
between different modes that may include multistage vacations, followed by rests, and
several service phases as in Abolnikov, Dshalalow, and Treerattrakoon [45], Dshalalow [46],
Dshalalow, Kim, and Tadj [49], Dshalalow and Merie [51] in the context of queueing and
Dshalalow and Huang [53–55], in the context of stochastic games.

Multidimensional Lévy walks with competing components were noticed to model
games of several players under hostile action. The game is over when one of the players is
ruined, that is, when one or more competing components cross their respective thresholds.
Here again we see the escape of the walk from a set. The model is definitely not a stochastic
game in the traditional sense, but it serves purposes of a game-related setting and as such it
works very well to model wars, economic competitions, and stock and stock option trading,
to name a few. Dshalalow [56,57], Dshalalow and Liew [58–60] studied applications of
random walk fluctuations to finance, while Dshalalow and Huang [53–55], Dshalalow and
Iwezulu [61], Dshalalow and Ke [62,63], and Dshalalow and Treerattrakoon [64] studied
exclusively antagonistic games and in the latter case, with three players two of whom can
team up against the third player. Dshalalow and White [65,66] focused on random walks
applications to stochastic networks. Additionally, Dshalalow and Iwezulu [61] considered
applications to cancer research.

Most of work mentioned above is about random walks in Rd
+. Thus, random walks

that move in all directions are analytically more challenging and unfortunately they end up
in not close forms for their principal functionals. There has been a way to circumvent this
obstacle by introducing so-called auxiliary active components. For example, if underlying
random walk’s components are not monotone increasing but fluctuate, the true escape
scenario is difficult to model without a cost of analyticity, but appending auxiliary active
components can alleviate the predicament because they can point to the direction when
the nonmonotone components raise, dive, spike, all once or more times (see Section 4). So
that the traditional notion of escape is modified, but it still gives us an ample amount of
explicit information about, say the behavior of financial instruments. There are various
alternatives that can predict the future of a stock portfolio if it comes to trading options
strategies as to buy underlying contracts long or short. (See a discussion in Section 4 and in
Dshalalow and Liew [59].) One simple example of an antagonistic game in finance is set
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about best time to exercise a stock option on a stock just before it plunges and prior to its
maturity, whichever comes first.

Note that since the escape of random walks offer predictive tools for outcomes of the
games such as those occurring in finance, it stands for reason to refine the information
that leads to ruin. One of such efforts were undertaken in Dshalalow and Ke [62,63] by
introducing a smaller subset A′ ⊆ A that a walk will escape from before it escapes from
A that should give us an extra layer of security. Another way to refine the information is
to allow an access to the underlying walk at any epoch of time, thereby making it time
dependent. Until now, we meant only walks whose escape parameters were not related
to any deterministic times. Such refinement allows us to have the first passage time and
the position of the walker upon its escape team up with the continuous time parameter
version S(t) of the walk and attempt to still yield tame analytical expressions. We call
such approach time sensitive analysis. It was introduced in Dshalalow [37] and further
refined in [67] and then picked up in a series of papers. We just mention some: Agarwal,
Dshalalow, and O’Regan [68], Al-Matar and Dshalalow [69], Dshalalow [70,71], Dshalalow
and Bacot [72], Dshalalow and Nandyose [73,74], Dshalalow, Nandyose, and White [75],
Dshalalow and White [76]. See further discussions in Sections 5 and 6.

Among other random walk applications, Antal and Redner [77] studied first passage
time properties of a discrete time random walk in which the length of each step is uniformly
distributed on interval [−a, a]. The walker starts initially at arbitrary point x ∈ [0, 1] with
end points absorbing. The idea comes from the problem of DNA sequence recognition by a
mobile protein.

Hughes, in his book [78], discusses various modifications of random walks, such as
random walks on triangular lattices and on fractals as well as “self-avoiding walks” in
which the walker does not visit the same point more than once. Among various applications,
self-avoiding walks can model long-chain polymers in dilute solutions.

We would also like to mention applications of random walks and fluctuations to physics
in Redner [79], finance in Kyprianou and Pistorius [80], Muzy, Delour, and Bacry [81], and
Scalas [19], astronomy in Uchaikin and Gusarov [82], Zhou, Sun, and Zhou [83], biology
and medicine in Odagaki and Kasuya [84], electrical networks in Telcs [26], social networks
in Sarkar and Moore [24], wireless communications in Jabbari, Zhou, and Hillier [85], and
queueing in Asmussen [86], Bayer and Boxma [87], Bladt and Nielsen [87], Cohen [88], Gannon,
Pechersky, Suhov, and Yambartsev [89], Guillemin and van Leeuwaarden [90], Janssen and van
Leeuwaarden [91], Lemoine [92], Stadje [93], Takács [2], and Zorine [94] published by other
authors.

Besides, there is a variety of excellent books and survey articles on random walks or
directly related to random walks by Bingham [95,96], Bladt and Nielsen [97], Blanchard
and Volchenkov [21], Brémaud [22], Fayolle, Iasnogorodski, and Malyshev [15], Foss, Kor-
shunov, and Zachary [98], Fujie and Zhang [23], Gut [99], Hildebrand [16], Iksanov [100],
Lawler [101], Redner [79], Shi [25], Slade [102], Takács [2], Telcs [103], and Wijesundera,
Halgamuge, and Nanayakkara [104].

2. The Operational Calculus of One-Dimensional Random Walks

All processes are defined on a probability space (Ω,F , P). Our work on random walk
with non-negative integer jumps dates back to the 1990s [35,37–40,105] about
S = ∑∞

n=0 Xnεtn with position dependent marking, that is when Xn depends on tn − tn−1,
but not on any other components of the support counting measure T = ∑∞

n=0 εtn . More
specifically, the sequence {(X0, t0), (X1, t1), . . .} is a delayed renewal process.

We further assume that S is a Lévy process that, in particular, warranted against clus-
tering of tn’s. With A = [0, M), assuming M ∈ N, we are interested in the time and position
of S upon its escape from A. Thus we have: ν =inf{m : Sm = X0 + . . . + Xm ∈ Ac}, as the
exit or escape index, tν—the exit time or first passage time, Sν—the position of the walker
at tν (or excess value of M).
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The transform

Φν = Φν(ξ, u, v, ϑ, θ) = EξνuSν−1 vSν e−ϑtν−1−θtν (1)

for ξ, u, v ∈ B(0, 1), Re ϑ ≥ 0, Re θ ≥ 0, where B(0, 1) is the compact unit ball in C). This
is of the joint distribution of ν, Sν, tν, and two more useful pre-escape quantities Sν−1 and
tν−1 (pre-exit time) representing the position and time the walker last seen in set A before
its escape. Note that because the jumps Xn are valued in N, the walker at time tν is at Sν

that can be positioned arbitrarily away from A on its escape time.
We claim that Φν can be expressed in a closed form. First we define the D-operator

as follows

Dk
x ϕ(x, y) =

{
limx→0

1
k!

∂k

∂xk

[
1

1−x ϕ(x, y)
]
, k ≥ 0

0, k < 0
(2)

for x ∈ B(0, 1) and Re y ≥ 0. Here ϕ is a function, analytic at zero in the first variable.
Suppose the joint transforms

γ0(z, θ) = EzX0 e−t0θ , γ(z, θ) = EzX1 e−(t1−t0)θ (3)

with z ∈ B(0, 1) and Re θ ≥ 0 are known. Then, the following theorem holds.

Theorem 1. The following formula holds.

Φν =DM−1
x

(
γ0(v, θ)− γ0(xv, θ) +

ξγ0(xuv, ϑ + θ)

1− ξγ(xuv, ϑ + θ)
(γ(v, θ)− γ(xv, θ)

)
(4)

where x ∈ B(0, 1) and the rest of domains are specified in (1).

Proof. (i) Introduce the transformation applied to function
[
N0, B(0, 1) ⊆ C, f

]
Dp{ f (p)}(x) :=

∞

∑
p=0

xp f (p)(1− x), x ∈ B(0, 1)

It can be readily shown that the inverse operator (2) can restore f , if we apply it for
every k:

Dk
x
(

Dp{ f (p)}(x)
)
= f (k), k = 0, 1, . . .

Further, introduce the auxiliary family of exit indices

ν(p) := inf{m : Sm = X0 + . . . + Xm > p}

for p = 0, 1, ... along with the family of the functionals

Φν(p) = Eξν(p)uAν(p)−1 vAν(p) e−ϑτν(p)−1−θτν(p)

for p = 0, 1, ..., noticing that ν = ν(M− 1). So, if we apply Dp to Φν(p), we can then restore
Φν(M−1) = Φν by applying the inverse operator DM−1 to DpΦν(p).

(ii) Before we apply Dp to Φν(p) we notice that

Dp(1{ν(p)=j})(x) = xAj−1 − xAj , j = 0, 1, . . .

with , A−1 := 0. Indeed, observe that

{ν(p) = j} = {Aj−1 ≤ p} ∩ {Aj > p}, j = 0, 1, . . . ,
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since {Aj} is a monotone, nondecreasing sequence of partial sums. Hence,

1{ν(p)=j} = 1{Aj−1≤p}1{Aj>p} = 1{Aj−1≤p} − 1{Aj≤p}.

Then,

Dp(1{ν(p)=j})(x) = (1− x)
∞

∑
p=0

xp1{Aj−1≤p}1{Aj>p}

= (1− x)
Aj−1

∑
p=Aj−1

xp = (1− x)

 ∑
p≥Aj−1

xp − ∑
p≥Aj

xp

.

The rest is obvious.
(iii) We first break Φν(p) into

Φν(p) = Eξν(p)uAν(p)−1 vAν(p) e−ϑτν(p)−1−θτν(p)

=
∞

∑
j=0

Eξ juAj−1 vAj e−ϑτj−1−θτj 1{ν(p)=j}

Then, applying Dp to Φν(p) and using the Fubini’s theorem we have

Φ∗(x) = Dp(Φν(p))(x)

=
∞

∑
j=0

Eξ juAj−1 vAj e−ϑτj−1−θτj Dp(1{ν(p)=j})(x)

=
∞

∑
j=0

ξ jE(xuv)Aj−1 e−(ϑ+θ)τj−1 EvXj(1− xXj)e−θ∆j

Denote

Ej := E
[
(xuv)Aj−1 e−(ϑ+θ)τj−1

]
Fj := E

[
vXj(1− xXj)e−θ∆j

]
for j = 0, 1, . . . Taking τ−1 = A−1 = 0, we have E0 = 1 and F0 = γ0(v, θ)− γ0(xv, θ).

For j ≥ 1,

Ej = γ0(xuv, ϑ + θ)γj−1(xuv, ϑ + θ)

Fj = γ(v, θ)− γ(xv, θ).

It can be shown that ‖γ(xuv, ϑ + θ‖ < 1, if ‖x‖ < 1 due to the above assumption
(proven below in part (iv), which will warrant the convergence of the geometric series

∑
j>0

ξ jγj−1(xuv, ϑ + θ) =
ξ

1− ξγ(xuv, ϑ + θ)
.

The rest is obvious.
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(iv) With xuv = z, we now show that for γ(z, θ) = EzX1 e−∆1θ , ‖γ(z, θ)‖ < 1 if ‖z‖ < 1.
We have

EzX1 e−∆1θ =
∞

∑
k=0

zk
∫ ∞

t=0
e−tθ PX1⊗∆1(k, dt) ≤ ‖EzX1 e−∆1θ‖

≤
∞

∑
k=0
‖z‖k

∫ ∞

t=0
‖e−tθ‖PX1⊗∆1(k, dt)

=
∞

∑
k=0
‖z‖k

∫ ∞

t=0
e−tRe(θ)PX1⊗∆1(k, dt)

=
∫ ∞

t=0
e−tRe(θ)PX1⊗∆1(0, dt) +

∞

∑
k=1
‖z‖k

∫ ∞

t=0
e−tRe(θ)PX1⊗∆1(k, dt)

< a + e−Re(θ)b + ‖z‖c + ‖z‖e−Re(θ)d

as ‖z‖ < ‖z‖k for k ≥ 1 and ‖z‖ < 1, and where

a :=
∫ 1

t=0
PX1⊗∆1(0, dt)

b :=
∫ ∞

t=1
PX1⊗∆1(0, dt)

c := ∑
k≥1

∫ 1

t=0
PX1⊗∆1(k, dt)

d := ∑
k≥1

∫ ∞

t=1
PX1⊗∆1(k, dt)

Then, a + b + c + d = 1 while

a + e−Re(θ)b + ‖z‖c + ‖z‖e−Re(θ)d < 1

if ‖z‖ < 1 and e−Re(θ) ≤ 1. The latter inequality holds because Re(θ) ≥ 0. The former
inequality ‖z‖ < 1 holds because z = xuv and ‖x‖ < 1.

Furthermore, e−Re(ϑ+θ) = e−Re(ϑ)e−Re(θ) ≤ 1 satisfied with Re(ϑ) ≥ 0 and Re(θ) ≥ 0
in the LST anyway. This shows that ‖γ(xuv, θ + ϑ)‖ < 1.

The below properties of D are in support of our claim that the expression in (4)
is tractable.

(i) Dk is a linear functional on the space of all functions analytic at zero.
(ii) Dk

x(1(x)) = 1, where 1(x) = 1 for all x ∈ R.
(iii) Let g be an analytic function at zero. Then,

Dk
x

(
xjg(x)

)
= Dk−j

x g(x) (5)

Proof. With the use the Leibnitz formula

dk

dxk (F(x)G(x)) =
k

∑
s=0

(
k
s

)
(F(x))(s)G(k−s)(x)

and F(x) = xj and G(x) = g(x)
1−x . Hence, when applying Dk, we have

Dk
x

(
xjg(x)

)
=

1
k!

k

∑
s=0

(
k
s

)
ds

dxs

(
xj
)∣∣∣

x=0
(k− s)!Dk−s

x g(x) = Dk−j
x g(x).
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(iv) In particular, if j = k, we have Dk
x

(
xkg(x)

)
= g(0).

(v) If x−s f (x) is analytic at zero, then

Dk
x
(
x−s f (x)

)
= Dk+s

x ( f (x)) (6)

(vi) If a(x) = ∑∞
i=0 aixi, then

Dk
xa(x) =

k

∑
i=0

ai (7)

and

Dk
xa(xy) =

k

∑
i=0

aiyi. (8)

Remark 1. Formulas (7) and (8) enable one to calculate partial sums of a power series.

(vii) For any real number a and for a positive integer n, except for a = n = 1, it holds true
that

Dk
x

{
1

(1− ax)n

}
=

{
k + 1, a = n = 1

∑k
j=0 (

n+j−1
j )aj, else.

(9)

(viii)For any two real numbers a, b and two positive integers n and r (except for a = n = 1
and b = r = 1) it holds that

Dk
x

{
1

(1− ax)n
1

(1− bx)r

}
=

k

∑
j=0

(
n + j− 1

j

)
aj

k−j

∑
i=0

(
r + i− 1

i

)
bi. (10)

Proof. By the proof of property (iii),

Dk
x

{
1

(1− ax)n
1

(1− bx)r

}
= Dk

x

{
∞

∑
j=0

(
n + j− 1

j

)
(ax)j 1

(1− bx)r

}

Then, interchanging the operator and the series and then using properties (iii) and (vii),
this simplifies to

Dk
x

{
1

(1− ax)n
1

(1− bx)r

}
=

k

∑
j=0

(
n + j− 1

j

)
ajDk−j

x

{
1

(1− bx)r

}

=
k

∑
j=0

(
n + j− 1

j

)
aj

k−j

∑
i=0

(
r + i− 1

i

)
bi.

(ix) If X be an integer-valued non-negative r.v. with h(z) = EzX and k is a positive integer,
then

EzX∧k = Dk
x

{
h(xz) + zk[1− h(x)]

}
. (11)

(x) If X be an integer-valued non-negative r.v. with h(z) = EzX and k is a positive integer,
then

Ez(X−k)+ = Dk
x

{
h(x) + z−k[h(z)− h(xz)]

}
. (12)
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Formula (4) of Theorem 1 is largely simplified when the marginal transform
Φν(1, 1, 1, v, θ) = EvSν e−θtν is sought. That is, with ξ = u = 1, ϑ = 0, we have

Φν(1, 1, 1, v, θ) = γ0(v, θ)− (1− γ(v, θ))DM−1
x

(
γ0(xv, θ)

1− γ(xv, θ)

)
(13)

In some applications t0 = 0 and X0 = i (≥ 0), then γ0(xv, θ) = (xv)i. Then, using
property (iii) of D, this reduces to

Φν(1, 1, 1, v, θ) = vi − vi(1− γ(v, θ))DM−1−i
x

(
1

1− γ(xv, θ)

)
. (14)

Example 1. To see the utility of the above expressions, consider the classical queueing system
MX/GN/MV/1/∞, that is, with marked Poisson input, N-policy general service, and multiple
vacations. The server goes on maintenance (known as vacations) that starts when the queue is
exhausted and it consists of multiple series of random segments none of each can be interrupted.
The primary service resumes when the queue accumulates to at least N units upon the end of one of
the maintenance segments. Other than the usual routine with Pollaczek–Khintchine formula for
the pgf of the equilibrium distribution of the queue length upon departures, there is a need of the
contents of the queue upon the end of maintenance when the server attains to the system finding the
line of units most likely in excess of N. In other words, there is a need of finding the distribution of
the number of units entering the queue during the maintenance period whose length is implicitly
controlled by N.

Here we are under the following specifications. t0 = X0 = 0, that is the server starts off its
maintenance immediately after the queue drops to zero implying that γ0(z, θ) = 1. Then,

γ(z, θ) = EzX1 e−t1θ = γ(θ + λ− λa(z)), (15)

where γ(θ) = Ee−t1θ is the LST of a maintenance segment and a(z) is the pgf of a batch size of the
input (that is marked Poisson with rate λ of its support counting measure). It is thus obvious that
the queueing process involved during the maintenance sequence is a random walk S observed upon
the successive ends t1, t2, . . . of maintenance segments. (We are not concerned about the status of the
process upon each arrival.) So S = ∑∞

n=0 Xnεtn is with position dependent marking characterized
by the functional γ(z, θ) in (15). Combining the special case of (14) (i = 0) and (15) gives the
joint transform

Φν(1, 1, 1, z, θ) = EzSν e−θtν

= 1− [1− γ(θ + λ− λa(z))]DN−1
x

(
1

1− γ(θ + λ− λa(xz))

)
(16)

of the maintenance length and the number of units accumulated during maintenance on
server’s return.

To further illustrate the use of the D-operator, consider the special case the system under the
assumptions that the input is ordinary, i.e., a(z) = z and the maintenance segments are a.s. of
constant length c. Hence, γ(θ) = e−cθ and

1
1− γ(λ− λa(xz))

=
1

1− e−cλ(1−zx)
, |xz| < 1. (17)

The latter condition is met when |x| < 1 which is sufficient when using the D-operator in (16). It
is readily seen that 1

1−e−cλ(1−zx) is analytic when xRez < 1 that we can easily satisfy with x small
without forcing z ∈ B(0, 1), implying that

1
1− e−cλ(1−zx)

= 1 +
∞

∑
n=1

e−cλnecλnzx = 1 +
∞

∑
k=0

(cλz)k

k!
xk

∞

∑
n=1

e−cλnnk
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and

DN−1
x

{
1

1− γ(λ− λa(xz))

}
= 1 +

N−1

∑
k=0

(cλz)k

k!

∞

∑
n=1

e−cλnnk

after using formula (7). Finally, the marginal pgf of Sν (the number of units in the system
accumulated upon server’s return) reads

Φν(1, 1, 1, z, 0) = EzSν

= 1−
[
1− e−cλ(1−z)

][
1 +

N−1

∑
k=0

(cλz)k

k!

∞

∑
n=1

e−cλnnk

]

3. Random Walks on Infinite Graphs and Cybersecurity: A Bivariate Model

Consider an infinite weighted graph in which weights are associated with nodes rather
than edges. There are no infinite graphs in the real world, rather large graphs (representing
large-scale networks), see Dshalalow and White [65,66]. Assume that during a series
t0, t1, . . . of cyberattacks, successive batches of nodes are incapacitated upon random time
increments. Associated with each node is a random weight representing its value to the
health of the network. We assume the network enters a critical state wherein it may become
dysfunctional if the number of nodes incapacitated by hostile attacks exceeds a fixed integer
threshold M or the magnitude of weights associated with the compromised nodes exceeds
a fixed real threshold W. We proceed with more formalism of the model.

Let (Ω,F (Ω), P) be a probability space and let

η = N ⊗W = ∑
k≥1

(nk, wk)εtk , (18)

where εa is a Dirac point measure, be a marked Poisson random measure on this probability
space describing the evolution of damage taken to a network, where

nk nodes are destroyed at time tk, k = 1, 2, . . . ,
wk = ∑nk

j=1 wjk is the non-negative real weight associated with the nk nodes

and the underlying support counting measure ∑∞
k=1 εtk is Poisson of rate λ directed by λ|·|,

where |·| is the Borel-Lebesgue measure on B(R+).
We assume that nk’s are iid (and independent of wjk’s) with common marginal pgf

g(z), and wjk’s are iid with common LST l(u) for j, k ∈ N.
Obviously, η is a bivariate Poisson random walk on a two-dimensional random grid

generated at times tk’s in such a way that if an underlying walker is located at point

(∑m
k=0 nk, ∑m

k=0 wk) at time tn, it moves to
(

∑m+1
k=0 nk, ∑m+1

k=0 wk

)
by time tn+1 driven by the

jump (nm+1, wm+1) that goes to the right or upward.
We have the following representation for η as the transform of its dependent compo-

nents N andW .

EzN (T)e−uW(T) = eλ|T|[g(zl(u))−1] (19)

with Re(u) ≥ 0, where where T is a Borel subset of R+.
Now, suppose random walk η is observed by a delayed renewal process

T =
∞

∑
n=0

ετn (20)

such that

∆n = τn − τn−1, n ∈ N (21)
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are iid and independent of ∆0 = τ0 and

L0(θ) = Ee−θτ0 (22)

L(θ) = Ee−θ∆1 , (23)

each with Re(θ) ≥ 0 are the LST of ∆0 = τ0 and the common LST of ∆n for n ∈ N,
respectively.

Then,

E
[
zN (τ0)e−uW(τ0)−θτ0

]
= L0[θ + λ− λg[zl(u)]] = γ0(z, v, θ) (24)

E
[
zN (∆1)e−uW(∆1)−θ∆1

]
= L[θ + λ− λg[zl(u)]] = γ(z, w, θ) (25)

are the functionals describing the total number of lost nodes and their associated weights
observed within time intervals [0, τ0] and (τ0, τ1], respectively, that we assume known or
readily obtainable.

X ⊗Y ⊗ T =
∞

∑
n=0

(Xn, Yn)ετn (26)

is the bivariate random walk with mutually dependent marks

(Xn, Yn) : Ω→ N×R+

that emerged from embedding in η upon times T = {τ0, τ1, τ2, . . .}. The random walk
X ⊗ Y ⊗ T describes the path of the walker that moves on the associated random grid
updated upon walker’s moves at T .

Let Sn = (∑n
i=0 Xi, ∑n

i=0 Yi). Given the rectangle A = [0, M] × [0, V], where M ∈
N, V ∈ R+, we are interested in the escape parameters upon walker’s exit from set A.
Namely,

µ := inf

{
m ≥ 0 : Nm =

m

∑
i=0

Xi > M

}
(27)

ν := inf

{
n ≥ 0 : Wn =

n

∑
i=0

Yi > V

}
(28)

are the exit indices.
We would say that the component X of random walk X ⊗Y ⊗T is terminated at time

τµ,and component Y is terminated at time τν if X and Y acted alone, but we seek the time
one of them terminates. If the original marked Poisson walk η is observed by T , then the
embedded process will exhibit (mutually dependent) increments Xn and Yn as the marks
in the process X ⊗Y ⊗ T . The motion of the walker represented by the walk X ⊗Y ⊗ T is
observed upon T and gives us the escape time from set A that takes place at τρ = τµ ∧ τν,
where ρ = µ ∧ ν, the first observed passage time, which is delayed information regarding
the actual real-time crossing (which occurred earlier).

The target functional is

Φ = Φ(α0, α, β0, β, h0, h) = E
[
α

Nρ−1
0 αNρ e−β0Wρ−1−βWρ e−h0τρ−1−hτρ

]
, (29)

where α0, α ∈ B(0, 1), Re(β0) ≥ 0, Re(β) ≥ 0, Re(h0) ≥ 0, and Re(h) ≥ 0. This functional
includes all relevant virtual escape and pre-escape parameters including the first passage
time, pre-first passage time and locations of the walker upon its virtual escape from set A
and the location in set A as seen prior to the escape.
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The primary tool we use is the composition of the familiar D-operator of (2) and the
inverse LC−1 of the Laplace–Carson transform defined as

LCq(·)(w) = w
∫ ∞

q=0
e−wq(·)dq, (30)

with Re(w) > 0, with the inverse

LC−1
w (·)(q) = L−1

w (· 1
w
)(q), (31)

where L−1
w is the inverse of the Laplace transform. Then, the composition reads

Dxw(·)(p, q) = LC−1
w ◦ D

p
x (·)(q) (32)

The key result lies in the following theorem [66] (see the results combined in
Theorem 2.1 through Corollary 2.6 in that paper).

Theorem 2. The functional Φ satisfies the following formula.

Φ =Dxw

[
γ(α, β, h)− γ0(αx, β + y, h) +

γ0

1− γ
(γ(α, β, h)− γ(αx, β + y, h))

]
, (33)

where

γ = γ(α0αx, β0 + β + y, h0 + h), (34)

γ0 = γ0(α0αx, β0 + β + y, h0 + h), (35)

under notation (22)–(25), where x, y ∈ B(0, 1) and the domains of the rest are as in (29).

Note that formula (33) resembles that of (4) in Theorem 1 and for a good reason. (We
explain the similarity in forthcoming results.)

We skip the discussion about the claim about analytical tractability of formula (33),
which by all means is verifiable, instead moving to a noteworthy embellishment of Theorem
3.1 in Section 3 of the paper [66]. Namely, to refine information on the nature of the random
walk’s escape from set A or equivalently, severe loss of nodes in the network under attack,
we would like to add one more control level referred to as an auxiliary threshold. The latter
is with the objective to offset the inevitable crudeness due to the delay through restricted
observations on the walk around the first passage time.

Let M1 < M. Introduce the auxiliary index

µ1 = inf
{

j : Nj > M1
}

(36)

Our attention is now on the confined sub-σ-algebra F ∩ {µ1 < (µ ∧ ν)} and the associated
functional

Φµ1<(µ∧ν) = Φµ1<(µ∧ν)(u0, u, α0, α, v0, v, β0, β, θ0, θ, h0, h)

= E
[

u
Nµ1−1
0 uNµ1 α

N(µ∧ν)−1
0 αNµ∧ν e−v0Wµ1−1−vWµ1−β0Wµ∧ν−βWµ∧ν

× e−θ0τµ1−1−θτµ1−h0τ(µ∧ν)−1−hτµ∧ν 1{µ1<(µ∧ν)}

]
= Φµ1<µ<ν + Φµ1<µ=ν + Φµ1<ν<µ (37)

A realization of process X ⊗ Y ⊗ T of losses (defined in (26) above) in Figure 1
illustrates how it operates with respect to the introduced main and auxiliary thresholds. We
can regard X ⊗Y ⊗ T as a two-dimensional random walk on a random grid (rather than
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traditional lattice). We have a rectangular region formed of rectangular sectors in white,
green, and red colors. In real-time the walker attempts to escape the white-green area at
the first opportune time when the cumulative loss of nodes exceeds M or the cumulative
weight loss exceeds V, whichever comes first. It leaves a polygonal path in blue and a
cruder, observed, path in green. The walker enters the green area indicating that a lower
threshold M1 is crossed, while neither M nor V was. In reality, the green area can be empty
with a positive probability.

In Figure 1, the underlying real-time process (the blue dots) represents the real-time
incoming damages, which are observed only upon τk’s (depicted by the green dots), where
the M1-observed-crossing occurs before the first observed passage time (FOPT) of M or V
(i.e., there is an observation in the green area), at which the components of the process may
or may not coincide with their values at the real-time FPT (first passage time).

Figure 1. The process confined to {µ1 < min{µ, ν}}.

The following assertion on functional Φµ1<(µ∧ν) about the escape parameters of ran-
dom walk X ⊗ Y ⊗ T defined in (26) is an embellishment of the random walk model of
Theorem 2 verbalized in the context of cyberattacks on a network, and can be found in [66]
(Theorem 3.5).

Theorem 3. The functional Φµ1<(µ∧ν) of the network damage on the confined sub-σ-algebra
F (Ω) ∩ {µ1 < (µ ∧ ν)} satisfies the formula

Φµ1<(µ∧ν) = Dxyw

([
φ1

0 − φ0 +
ϕ0

1− ϕ
(φ1 − φ)

]
ξ1 − χ

1− ψ

)
(M1, M, V) (38)
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under the abbreviated notation in (39)–(44).

ϕ = γ(u0uα0αxy, v0 + v + β0 + β + w, θ0 + θ + h0 + h) (39)

φ = γ(uα0αxy, v + β0 + β + w, θ + h0 + h) (40)

φ1 = γ(uα0αy, v + β0 + β + w, θ + h0 + h) (41)

ψ = γ(α0αy, β0 + β + w, h0 + h) (42)

χ = γ(αy, β + w, h) (43)

ξ1 = γ(α, β, h) (44)

and expressions with 0 subscripts involve initial-jump functionals, e.g., ϕ0 is like ϕ except it uses
γ0 instead of γ.

Example 2. In this example we will present fully explicit probabilistic results for a special case
of the process with the M1-auxiliary threshold, under the following five assumptions made in the
context of network’s security.

1. As previously, the attack times {t1, t2, ...} form a Poisson point process of rate λ.
2. Inter-observation times are constant, i.e.,

∆k = τk − τk−1 = c a.s., L(θ) = e−θc.
3. Nodes lost per strike have an arbitrary finite discrete distribution, i.e., P{nk = j} = pj,

j = 1, ..., R and PGF g(z) = ∑R
s=1 pszs, with p= (p1, ..., pR)

4. Weight per node wjk ∈ [Gamma(α, β)], so we have LST l(z) =
(

β
z+β

)α
.

5. The initial functional γ0 = 1 (i.e., zero initial damage).

We note that deterministic observations present more of a challenge than many random
observations. The assumption on the number nodes destroyed in a single strike being bounded by
R is analytically convenient but not too restrictive, because R can be made arbitrarily large. The
general gamma distribution of weight of a single node is also pretty general.

Let E
[
uNµ1 e−vWµ1 e−θτµ1 1{µ1<(µ∧ν)}

]
be the Φµ1<(µ∧ν)-marginal functional of walk’s posi-

tion on the passage of threshold M1 (see the green area in the figure above) with the main escape
from set A not occurred. Then, the following holds formulated in the context of the cyberattack.

Under Assumptions 1–5, the joint transform of the number of lost nodes, their cumulative
weight, and the first passage time of the crossing of M1 preceding the first crossing of M or V (i.e.,
on the sub-σ-algebra F (Ω) ∩ {µ1 < (µ ∧ ν)}) satisfies the following formula [66]:

Φµ1<(µ∧ν)(1, u, 1, 1, 0, v, 0, 0, θ, 0, 0)

= E
[
uNµ1 e−vWµ1 e−θτµ1 1{µ1<(µ∧ν)}

]
= e−c(θ+λ)

{
M1−1

∑
k=0

ukFk(θ, p)
M−1−k

∑
m=0

umEm(p)
(

β

v + β

)α(k+m)

P(α(k + m), (v + β)V)

−
M1−1

∑
k=0

uk
(

β

β + v

)αk
P(αk, (v + β)V)

k

∑
n=0

En(p)Fk−n(θ, p)

}
, (45)

where

Fj(θ, p) =
b R−1

R jc
∑
r=0

(cλ)j−rLi−(j−r)

(
e−c(θ+λ)

)
∑
‖δ‖1=j

[R]·δ=r+j

pδ1
1 · · · p

δR
R

δ1! · · · δR!
, (46)
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[R] = (1, ..., R), δ = (δ1, ..., δR) ∈ NR
0 (δj ≤ R for each j),

Ej(p) =
b R−1

R jc
∑
r=0

(cλ)j−r ∑
‖δ‖1=j

[R]·δ=r+j

pδ1
1 · · · p

δR
R

δ1! · · · δR!
, (47)

Lis(z) = ∑∞
k=1 zkk−s is the polylogarithm, which is numerically tractable for our domain

{e−w : Re(w) > 0} with s ∈ Z≤0, P(x, y) = 1− Γ(x,y)
Γ(x) is the upper regularized Gamma function,

Γ(x, y) is the incomplete gamma function, and Γ(x) is the gamma function.

Remark 2. Through simulation of the process, we were able to produce some verification of the
results via numerical examples presented in Figures 2 and 3. For two sets of parameters of the process
with R = 3, (λ, [p1, p2, p3], [α, β], c, M1, M, V), we generated 100 realizations of the process for
each of a range of M1 values and calculated the empirical probabilities P{µ1 < (µ ∧ ν)} for each:

Figure 2. Predicted and empirical (simulated) probabilities for parameters
(1, [0.25, 0.5, 0.25], [1.5, 1.5], 1, M1, 1000, 1000).
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Figure 3. Predicted and empirical (simulated) probabilities for parameters (1, [0.25, 0.5, 0.25], [1.5, 1.5],
1, M1, 100, 50).

Some current work by White [106] goes further and considers large networks with
nodes connected by edges and the edges, rather than the nodes, have weights. Here,
successive attacks take out a random number of nodes, which removes a random number
of connected edges, each with a weight indicating its value to the network. The network
enters into a critical state if losses of any of these three types accumulate beyond some
pre-specified thresholds.

This is modeled through a Poisson random measure

η = N ⊗ E ⊗W = ∑
k≥1

(nk, ek, wk)εtk , (48)

where nk nodes are incapacitated in the kth attack at time tk, the jth node lost in the kth
attack has ejk incident edges that go down, and the ith edge from the jth node lost in the
kth attack has weight wijk, so we have

ek =
nk

∑
j=1

ejk (49)

wk =
nk

∑
j=1

ejk

∑
i=1

wijk (50)

This process is studied as above under delayed observation, so we consider the following
random measure, similar to ((26)).

X ⊗Y ⊗Z ⊗ T =
∞

∑
n=0

(Xn, Yn, Zn)ετn , (51)
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which is a three-dimensional random walk with mutually dependent marks (Xn, Yn, Zn) :
Ω→ N×N×R+ and we define

γ0(u, v, w, h) = E
[
uN (τ0)uE(τ0)e−wW(τ0)−hτ0

]
(52)

γ(u, v, w, h) = E
[
uN (∆1)vE(∆1)e−wW(∆1)−h∆1

]
(53)

We will define

Sn = (Nn, En, Wn) =

(
n

∑
i=0

Xi,
n

∑
i=0

Yi,
n

∑
i=0

Zi

)
.

Here, there are three thresholds, Mn, Me, Mw for losses of nodes, edges, and weights,
respectively, and three corresponding exit indices ρn, ρe, ρw with ρ = ρn ∧ ρe ∧ ρw. We seek
the functional

Φ = Φ(ξ, u0, u, v0, v, w0, w, h0, h)

= E
[
ξρu

Nρ−1
0 uNρ v

Eρ−1
0 vEρ e−w0Wρ−1−wWρ e−h0τρ−1−hτρ

]
, (54)

which is much like the functional (29) from Theorem 2, except it includes some extra terms
for the edge losses upon the exit, Eρ−1 and Eρ, and also includes a term ξρ corresponding to
a probability-generating function of the number of observations before the network enters
into its critical state.

The functional has been derived through a procedure similar to Theorem 2 above,
although it is a bit more difficult since this problem is three-dimensional and the weight
lost per attack is more complex. To accomplish this, we can use the operator

Dxyz(·)(p, q, r) = LC−1
z ◦ D

q
y ◦ D

p
x (·)(r) (55)

Theorem 4. The functional Φ satisfies the formula

Φ =Dxyz

[
γ0(u, v, w, h)− γ0(ux, vx, w + z, h)

+
ξγ0

1− ξγ
(γ(u, v, w, h)− γ(ux, vy, w + z, h))

]
(Mn, Me, Mw), (56)

where

γ0 = γ0(u0ux, v0vy, w0 + w + z, h0 + h) (57)

γ = γ(u0ux, v0vy, w0 + w + z, h0 + h) (58)

It is easy to draw many parallels between the functionals in Theorem 2 [65] and Theo-
rem 4 [106], which is suggestive of some structure that can extend to higher dimensional
results, as has recently been shown and will be outlined in Section 5 below.

4. Time Insensitive Random Walk and Applications

In summary, the random walk analysis surveyed in Sections 2 and 3 is referred to as
time insensitive analysis and the associate random walk is time insensitive. See Agarwal,
Dshalalow, and O’Regan [107], Agarwal and Dshalalow [108], Dshalalow [56,57], and
Dshalalow and Liew [58–60]. It pertains to the fact that the random walk process we
analyzed so far cannot be associated with continuous time information, say S(t) giving us
the status of the walk at any time t simultaneously with Sν, tν and other escape parameters
within interval [0, t]. Of course, we can pull out some probabilistic information about the
location of τν such as P{tν ≤ t} or P{tν ∈ B} and likewise P{Sν ∈ R} or for that matter, the
finite-dimensional distribution of Sν. However, this still falls short of the time continuous
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information S(t) on the walk that is very important in control theory. It was very obvious
that with our efforts to embed an auxiliary control level M1 prior to the main escape,
we make up for the lack of S(t). In the forthcoming sections we will address this issue
and present time sensitive walks which appear to provide us with a bulk of additional
information, but at a cost, because the insensitive analysis is tamer.

We return to this topic later, but for now we would like to present some applications
of the insensitive walks beyond the cyberattack models in Section 3.

Consider the random walk

S = A⊗P =
∞

∑
k=0

(Ak, Pk)εtk ,

valued in Nd ×Rl such that

(An,Pn) =

(
n

∑
k=0

Ak,
n

∑
k=0

Pk

)

is the position of the walker on the associated random grid. From this position, the walker
jumps to position (An+1,Pn+1). Here,

Ak = (Ak1, . . . , Akd), (59)

Pk = (Pk1, . . . , Pkl), (60)

while

An =

(
αn1 =

n

∑
k=0

Ak1, . . . , αnd =
n

∑
k=0

Akd

)
(61)

Pn =

(
πn1 =

n

∑
k=0

Pk1, . . . , πnl =
n

∑
k=0

Pkl

)
. (62)

The objective is to investigate time and the position of the walker when its component
A escapes from rectangle A = ∏d

i=1 Ri ⊆ Nd. Often of main interest is the position of the
walker in Rl . Component A of S is called the active, while P is passive implying that
in our case, only A is contained, while P is unrestricted. Note that, unlike the previous
assumptions in Sections 2 and 3, the walk in Rl runs in all directions along a randomly
generated grid. However, the escape is determined by the projection

[
Nd ×Rl ,Nd, π

]
of

the position of the walker relative to set A. Here π is defined as the projection map from
Nd ×Rl to Nd.

In a nutshell, the escape coordinates in Nd × Rl are determined by the time and
location of the active components A of the walker upon their first crossing of A. Obviously,
the exit from A occurs when at least one of the active entries αnj crosses Rj of rectangle R.

The exit index is defined as

ρ = inf{n : An ∈ Ac}, (63)

implying that tρ is the first passage time and Sρ = (Aρ,Pρ) is the global location of the
walker in A×Rl upon A’s escape from set A.

Before we continue with more formalism, let us bring up a situation that led to the
above model.

Example 3. Suppose an agent decides whether or not to short an option on some stock S1 he does
not own. In the event he decides to short the option, he wonders if he is to acquire the stock or not to
dependent on the stock’s chance to hit the strike price. In this case, if the agent does not own the
stock, while it hits the strike price and the option holder will exercise the contract, he will have to
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deliver the stock and thus buy it at a market price. This particular example does not demonstrate
how to find the probability that the stock described by a random walk process will cross the threshold
determined by the strike price, but it will give the functional of the first passage time when the stock
drops for the first time or when its increment will increase above some level M1. This can be used
as an initial information for the stock to run its further path. This information can also be used
whenever one decides whether or not to buy a volatile stock. Now, the prediction about the first drop
or sharp increase can be refined by adhering to stock S1 yet another stock, say S2, which is proved to
be well correlated with S1. Then, instead of a scrutiny on stock S1 alone, we can mix S1 and S2 to
see whichever of the two will come first to drop or rise. The prediction can be more accurate.

In a similar situation, suppose an owner of a stock portfolio is interested to extend or update it
with more stocks. A diversification is a common strategy. Another strategy is to mix a portfolio
with longs and shorts. Suppose the agent would want to know whether to long or short just two
stocks dependent on what direction they may take. For instance, if a sharp drop occurs, it could be a
signal of price decline; if a significant rise takes place without any economical reasons, it could be an
indication of overpricing that would present another risk to the stock owner. In this case, the owner
would also like to predict the moment either the first drop or a significant rise is to happen (which
we will associate with the first passage or exit time). Then, if necessary, shorting the two stocks, the
agent would be able to minimize risk, optimize the respective portfolio’s performance and thus attain
a higher return on his investment.

In the context of the above notation, πn1 and πn2 give the prices of the two stocks upon
reference times tn, n = 1, 2, . . . so that Pn1 and Pn2 are increments of the stock price changes
between their respective subintervals (tn−1, tn], where t0 = 0. We would like to emphasize that
because the stock prices periodically change their directions, the named increments are real-valued
r.v.’s, rather than positive and thus the stock prices are not monotone, in contrast with monotone
components of Sections 2 and 3.

Introduce four auxiliary active components

An1 =

{
0, Pn1 ≥ 0
1, Pn1 < 0

(64)

An2 =

{
0, Pn2 ≥ 0
1, Pn2 < 0

(65)

An3 =

{
0, Pn1 < M1
1, Pn1 ≥ M1

(66)

An4 =

{
0, Pn2 < M2
1, Pn2 ≥ M2

(67)

that follow the evolution of two questionable stocks’ prices. Now since the stock price changes are not
monotone sequences, we associate them with passive components whereas the auxiliary components
of (64)–(67) are monotone.

Now while stock Si’s price appreciates, Aki = 0, k = 1, 2, . . . , resulting in (αn1, αn2) =
(0, 0), n = 1, 2, . . . , i = 1, 2. When at some tn, at least one of the two stock prices drops for the
first time, we will see (αn1, αn2) = (0, 1) or (1, 0), or (1, 1). The other two active components of A
will watch similarly behaving rising trends of the two stocks as per (66) and (67).

Thus, setting the rectangle A = {0, R1} × {0, R2} × {0, R3} × {0, R4} we can predict the
trend of the two stocks to appreciate or dive and suggest a longing or shorting strategy of acquiring
stock portfolio. For example, crossing R1 or R2 at tρ points to changing direction of the respective
stock prices from rising to dropping. On the other hand, crossing R3 or R4 points to a solid gain in
prices that suggests longing rather than shorting the stocks. A mixed trend speaks of unwanted
volatility.
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Back to the general case, we introduce the functional

Φρ = Φρ(ξ, u, v, η, ξ, ϑ, θ)

= E
[

ξρu
αρ1−1
1 · · · uαρd−1

d v
αρ1
1 · · · v

αρd
d × eiη·Pρ−1+iξ·Pρ−ϑtρ−1−θtρ

]
(68)

such that u = (u1, . . . , ud), v(v1, . . . , vd) ∈ Cd with ui, vi ∈ B(0, 1) for i = 1, . . . , d, η, ξ ∈ Rl ,
and ϑ, θ ∈ C+. (i.e., Re(ϑ) ≥ 0 and Re(θ) ≥ 0.)

This functional includes familiar escape and pre-escape parameters. One of the utilities
of pre-escape parameters, at least in the context of stock prices or option trading, is to
predict the highest stock price, say before a drop or a second drop or sharp drop.

Next we have the multivariate version of the D-operator defined as

DR
x = DR1

x1 ◦ . . . ◦ DRd
xd (69)

such that DRi
xi {ϕ(x)} = limxi→0

1
Ri !

∂Ri

∂xRi

[
1

1−xi
ϕ(x)

]
, where R = (R1, . . . , Rd),

x = (x1, . . . , xd) ∈ Cd, xi ∈ B(0, 1) for i = 1, . . . , d, and ϕ is analytic at 0 with respect
to each x1, . . . , xd.

Theorem 5. The functional Φρ satisfies the following formula.

Φρ = DR−1
x

[
γ0(v; ξ, θ)− γ0(x ◦ v; ξ, θ)

+ γ0(x ◦ u ◦ v; η+ ξ, ϑ + θ)
ξγ(v; ξ, θ)− γ(x ◦ v; ξ, θ)

1− ξγ(x ◦ u ◦ v; η+ ξ, ϑ + θ)

]
(70)

where

γ0(u; η, ϑ) = E
[
uA01

1 · · · uA0d
d eiη·P0−ϑt0

]
(71)

γ(u; η, ϑ) = E
[
uA11

1 · · · uA1d
d eiη·P1−ϑ(t1−t0)

]
(72)

and u◦v is the Hadamard product of vectors u and v.
We note that the functionals γ and γ0 are supposed to be known or they can be obtained. We

revisit Example 3 about stocks trading.

Example 4. In the context of Example 3 consider a special case when an agent observes two stocks
with some initial constant prices P01, P02 at the beginning, under assumption that t0 = 0. Because
P01 and P02 are positive, A01 = A02 = 0. It makes sense to set P01 < M1 and P02 < M2, thereby
setting A03 = A04 = 0 as well. Thus we have u = 1, so

γ0(1; η, 0) = ei(η1P01+η2P02) = g0(η) (73)

is a fixed constant.
Next, the agent wants to predict the first instant tρ when at least one of the four events takes

place: Stocks prices of S1 or S2 drop for the first time after appreciating, or with their increments
P= (P1, P2) spike above M1 or M2. If any of these events occur at time tρ, they will turn Pρ1 or
Pρ2 negative and thus Aρ1 or Aρ2 = 1, or Pρ1 ≥ M1 or Pρ2 ≥ M1 and thus Aρ3 or Aρ4 = 1.
Therefore, A = {0, 1}4 and R = (1, 1, 1, 1).
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We need to figure out

γ(u; η, ϑ) = E
[
uA11

1 · · · uA14
d eiη·P1−ϑt1

]
= E

[
eiη·P1−ϑt11{0≤P1<M}

]
+ E

[
u1eiη·P1+ϑt11{P11<0,0≤P12<M2}

]
+ E

[
u2eiη·P1−ϑt11{0≤P11<M1,P12<0}

]
+ E

[
u3u4eiη·P1−ϑt1 1{P1≥M}

]
+ E

[
u4eiη·P1−ϑt11{0≤P11<M1,P12≥M2}

]
+ E

[
u1u4eiη·P1−ϑt11{P11<0,P12≥M2}

]
+ E

[
u2u3eiη·P1−ϑt11{P11≥M1,P12<0}

]
+ E

[
u1u2eiη·P1−ϑt11{P1<0}

]
+ E

[
u3eiη·P1−ϑt11{P11≥M1,0≤P12<M2}

]
(74)

where M = (M1, M2). This can be calculated dependent on the choice of distributions of P and t1.
(With position independent marking, that is, assuming P and t1 independent, the computation can
be straightforward.) Now applying Theorem 5, we have

Φρ = D0
x

[
γ0(v; ξ, θ)− γ0(x ◦ v; ξ, θ)

+ γ0(x ◦ u ◦ v; η+ ξ, ϑ + θ)
ξγ(v; ξ, θ)− γ(x ◦ v; ξ, θ)

1− ξγ(x ◦ u ◦ v; η+ ξ, ϑ + θ)

]
= g0(η+ ξ)

ξγ(v; ξ, θ)− γ(0; ξ, θ)

1− ξγ(0; η+ ξ, ϑ + θ)
(75)

For example, the most explicit functional is the marginal distribution of the exit index ρ (which is
the predicted observation number from 1, 2, . . . when the above mentioned events take place). Thus,
the pgf of ρ reads

Eξρ = Φρ(ξ, 1, 1, 0, 0, 0, 0) =
ξγ(1; 0, 0)− γ(0; 0, 0)

1− ξγ(0; 0, 0)
= ξ

1− a
1− ξa

, (76)

where

a = γ(0, 0, 0) = P{0 ≤ P1 < M} (77)

In particular, the mean of ρ is

Eρ =
1

1− a
(78)

Next, the marginal LST of tρ−1 is

Φρ(1, 1, 1, 0, 0, ϑ, 0) = Ee−ϑτρ−1 =
1− γ(0, 0, 0)
1− γ(0, 0, ϑ)

=
1− a

1− a(ϑ)
, (79)

where

a(ϑ) = Ee−ϑt11{0≤P1<M} = aEe−ϑt1 = aq(ϑ) (80)

(if with position independent marking).
Thus, under the position independent marking assumption (that is price variations are inde-

pendent of the time increments, the marginal transform of the highest portfolio price before at least
one of the two stocks drops or spikes is

Ee−ϑtρ−1 =
1− a

1− aq(ϑ)
, (81)
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implying that the mean time prior to one of these events is

Etρ−1 =
aEt1

1− a
. (82)

5. Higher Dimensional Random Walks

Consider a random measure (S , T ) = ∑∞
n=0 Xnετn , where Xn = (Xn,Yn) ∈ Rk

+ ×Rm,
and the corresponding delayed renewal process

Sn = (An,Pn) =

(
n

∑
i=0
Xi,

n

∑
i=0
Yi

)
, (83)

where An =
(

A1
n, ..., Ak

n

)
and Pn =

(
P1

n , ..., Pm
n
)
. Unlike any model considered previously,

some components of the jumps, the passive components Yn, are permitted to be negative.
Given the rectangle A = [0, L1]× · · · × [0, Lk]×Rm, where L = (L1, ..., Lk) ∈ Rk

+, we
are interested in the escape parameters upon walker’s exit from set A. Namely,

νi = inf{n ≥ 0 : Ai
n > Li} (84)

are the exit indices, and we focus on the first exit index

ρ = inf{νi : i = 1, . . . , k} = inf{n ≥ 0 : Sn /∈ A}. (85)

As seen in a prior section, Dshalalow and Liew [59,60] derived a functional containing
the pre-exit and post-exit non-negative active components Aρ−1 and Aρ as well as real-
valued passive components Pρ−1 and Pρ,

Φρ = Φρ(ξ, α, φ, β, ψ) = Eξρe−α·Aρ−1 eiφ·Pρ−1 e−β·Aρ eiψ·Pρ , (86)

where ξ ∈ B(0, 1), each component of α, β ∈ Ck have non-negative real parts, and φ,
ψ ∈ Cm.

A new work by White [109] departs from the works above to derive a general formula
for the probability of an arbitrary weak ordering of threshold crossings, a question of
practical interest in numerous applications outlined above related to stochastic network
defense, queueing theory, finance, and actuarial sciences.

In particular, a weak ordering of the exit indices ν1, . . . , νk is a member of the set

W =
{{

νp(1) � νp(2) � · · · � νp(k)

}
: p is a permutation of {1, . . . , k}

}
, (87)

where each � is fixed to be either = or <. Without loss of generality, each W ∈ W may be
represented as

W =
{

ν1 = · · · = νs1 < νs1+1 = · · · = νs2 < · · · < νsn−1+1 = · · · = νsn

}
, (88)

keeping in mind some permutation may be applied to the indices of the ν’s. The proofs
within Dshalalow [40] and Dshalalow and Liew [59,60] among others partition the sample
space intoW and derive functionals of the form

ΦW = ΦW(ξ, α, φ, β, ψ) = Eξρe−α·Aρ−1 eiφ·Pρ−1 e−β·Aρ eiψ·Pρ 1W (89)

for each weak ordering W ∈ W separately for k ≤ 4 before adding them to find Φρ. Note
that a special case of ΦW is

ΦW(1, 0, 0, 0, 0) = E1W = P(W), (90)

the probability of the weak ordering W occurring.
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This could be done manually for k ≥ 5 in principle, but it is impractical. W contains
all permutations of {ν1, . . . , νk}with strict inequalities, i.e., where threshold crossings occur
at distinct times, which is already k! elements. Further,W also contains many other weak
orderings because arbitrary subsets of the threshold crossings may occur upon the same
jump of the process. It turns out the cardinalities of W for dimension k correspond to
the Fubini numbers (or ordered Bell numbers): 1, 3, 13, 75, 541, 4683, 47,293, . . . Deriving
75 ΦW functionals for dimension four was feasible but took quite a lot of effort. Some
experimentation has shown that moving up to seven dimensions on a similar problem
is time-consuming but feasible with an automated procedure with a consumer-grade
computer, and a few more dimensions should work on more substantial hardware, but it
soon becomes infeasible regardless of computational resources.

The main result of White [109] takes an alternate path and generalizes the derivation
of an arbitrary P(W) in any finite k dimensions in its proof. Before we formulate the result,
let’s define the composition of k operators as

Hχ(·) = HL1
χ1 ◦ · · · ◦ H

Lk
χk (·), (91)

where

Hk
x(·) =

{
Dk

x(·), if component k is discrete in N
LC−1

x (·)(k), if component k is continuous in R+
(92)

This allows us to have a unified notation for the operator while permitting components of
the process to be discrete, continuous, or mixed.

Given this, we formulate the result.

Theorem 6. If each component of Sn is continuous and each vector xTj contains at least one
component with a positive real part, then for each W ∈ W ,

P(W) = Hχ

 n

∏
j=1

1
1− ΓTj

rj

∑
l=0

(−1)l ∑
J⊂Sj
‖J‖1=l

ΓTj∪J

, (93)

where χB =
(
χB

1 , . . . , χB
k
)
, χB

j = 1B(j)χj for B ⊆ {1, . . . , k},

γ(χ) = Ee−χ·X1 , (94)

ΓB = γ
(

χB
)

, (95)

rj = sj − sj−1 + 1, and Sj =
{

n ∈ N : sj−1 < n ≤ sj
}

.

For convenience, the result above was formulated under the assumption the compo-
nents of Sn are continuous-valued. However, if any discrete component of the process,
the definition of Hχ implies the appropriate change in the individual components to
D operators. The only other necessary change is to replace xm with − ln(xm) input to
the appropriate γ terms in order to convert the Laplace-Stieltjes transform Ee−xmX to a
probability-generating function ExX

m.
In all, this result gives a probability of each weak ordering of threshold crossings,

whether the components are continuous, discrete, or mixed. However, it is under k
operators, which at first glance seems to do little but push the problem to another impasse,
but some examples below demonstrate it is a practical result that agrees with empirical
experiments in special cases.
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Example 5. Recall the stochastic network problems in two dimensions addressed in Theorem 2
above. In the context of this section’s models, suppose

Sn = An =

(
n

∑
i=0

Xi,
n

∑
i=0

Xi

∑
j=0

Yij

)
, (96)

where each Xi represents the i.i.d. sizes batches of nodes incapacitated by attacks. The nodes lost
from the ith attack have i.i.d. random weights Yi1, . . . , YiXi representing their value to the overall
health of the network.

An interesting question is the probability the node loss crosses its critical threshold before, after,
or simultaneous to critical weight loss occurring. If one is clearly more likely, it provides some path
to make decisions to improve the reliability of the network–for example, whether efforts should be
made to shield nodes to reduce node losses or to decentralize the value within the network to reduce
weight losses.

If we assume node batches Xi are geometrically distributed with parameter p and the node
weights Yij are exponential with parameter µ, the following probabilities were computed explicitly
by simplifying Theorem 6 and applying the appropriate Hχ operator.

P(ν1 < ν2) =P(M1 − 1, µM2)−
e−pµM2

(1− p)M1−1P(M1 − 1, (1− p)µM2) (97)

P(ν1 > ν2) = Q(M1 − 1, µM2)− (1− p)M1−1e
pµM2
1−p Q

(
M1 − 1,

µM2

1− p

)
, (98)

with P(ν1 = ν2) = 1 − P(ν1 < ν2) − P(ν1 > ν2), where Q(M, y) = Γ(M,y)
Γ(M)

is the upper
regularized gamma function and P(M, y) = 1−Q(M, y) is the lower regularized gamma function.

These probabilities are compared to empirical probabilities computed from simulated special
case where µ = 1, p = 1

2 , and varying values of the thresholds M1 and M2 in the diagrams below.
In Figure 4, predicted results above are plotted as solid curves and empirical probabilities from

simulations of 10,000 paths of the process are computed and plotted as dots, which show strong
agreement.

Figure 4. Predicted and empirical (simulated) probabilities P(ν1 < ν2) with parameters µ = 1,
p = 0.5, and 0 ≤ M2 ≤ 20 for various M1 values.

We see a sigmoid pattern for the probability ν1 < ν2 when M1 is fixed and M2 grows. If we
realize ν1 < ν2 implies M1 is crossed before M2 and that the means of both the node and weight
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jumps from an attack are equal in this special case, this is very intuitive. A small M2 should
be crossed first with high probability resulting in a low probability of the converse, ν1 < ν2. At
M1 = M2, the probability is 0.5. A large M2 is rarely crossed first, giving a large probability that
ν1 < ν2.

For P(ν1 = ν2), we see similarly intuitive results.
Here, in Figure 5 again, simulated and predicted results strongly agree, as does intuition:

note that the peak occurs when M1 = M2, which should be when a simultaneous crossing is most
common in this case where the mean of the jumps in each dimension is equal.

Figure 5. Predicted and empirical (simulated) probabilities P(ν1 = ν2) with parameters µ = 1,
p = 0.5, and 0 ≤ M2 ≤ 20 for various M1 values.

While we were able to simply compute the probabilities to arbitrary precision with
numerical approximations in the example above, this is not always possible, especially at
higher dimensions, but the next example demonstrates an alternate path to practical results.

Example 6. Suppose the jumps of the process Xi are made up of three independent exponential ran-
dom variables, (Xi1, Xi2, Xi3), with parameters µ1, µ2, and µ3, respectively. In a three-dimensional
problem,W is made up of 13 weak orders of four types:

ν1 < ν2 < ν3, ν1 < ν3 < ν2, ν2 < ν1 < ν3, ν2 < ν3 < ν1, ν3 < ν1 < ν2, ν3 < ν2 < ν1

ν1 = ν2 < ν3, ν1 = ν3 < ν2, ν2 = ν3 < ν1

ν1 < ν2 = ν3, ν2 < ν1 = ν3, ν3 < ν1 = ν2

ν1 = ν2 = ν3

Since this example has jumps with independent components, it is enough to compute the four
probabilities in the first column and simply apply a permutation to the results and adjust the
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parameters accordingly to get the others in the same line. We refer the reader to [109] to see the full
results, but we reproduce the first one for the sake of discussion. We find

P(ν1 < ν2 < ν3)

= 1− e−µ2 M2

(
1 +

√
µ1µ2M2

∫ M1

0

e−µ1τ

√
τ

I1

(
2
√

µ1µ2M2τ
)

dτ

)
− e−µ3 M3

(
1 +

√
µ2µ3M3

∫ M2

0

e−µ2τ

√
τ

I1

(
2
√

µ2µ3M3τ
)

dτ

)

+ e−µ2 M2−µ3 M3L−1
x1

(
1
x1

∫ M2

0

e
µ1µ2(M2−τ)

µ1+x1
√

τ
I1

(
2

√
µ1µ2µ3M3τ

µ1 + x1

)
dτ

)
(M1) (99)

where I1 is the modified Bessel function of the first kind. The formulas derived for the other
13 probabilities had similar expressions, all made up of a term involving an inverse Laplace transform
of an integral involving a Bessel functions and less difficult terms to compute.

The expression above is not quite explicit since some expressions are under integrals and one
portion remains under a Laplace transform. The Bessel functions can be computed numerically to
high precision quickly and the integrals turn out to be quite easy to approximate to high accuracy
with standard numerical integration techniques.

The inverse Laplace transform poses some less widely-understood challenges, but it turns it
can reliably be inverted numerically in this instance using the fixed Talbot algorithm [110], which
uses trapezoidal numerical integration along a specific deformed contour, using the framework and
best practices developed by Abate and Whitt [111].

500 choices of parameters (µ1, µ2, µ3, M1, M2, M3) were sampled uniformly from the region
[0.5, 3]3 × [10, 40]3. For each vector of parameters, 100,000 realizations of the corresponding
processes were simulated and empirical probabilities were computed. The numerical scheme for at
least one of the 14 probabilities failed to converge properly in 11 of 500 cases, but the maximum
error on any of the 14 probabilities in the remaining 489 cases was 0.004, indicating success with
numerical inversion.

These two examples demonstrate the result of Theorem 6 is versatile and can be
computed explicitly or at least in a form that can be numerically approximated to high
precision in numerous interesting special cases.

The probabilities of [109] are unique in this area of study, but what about the full
functional Φρ in m + k dimensions? This is the focus of some current work by White [112],
which has recently confirmed the conjecture made by Dshalalow and Liew [59,60] that
their result applies for arbitrarily many active components k for a functional that may be
considered in the simplest sense as

Φρ = Φρ(u) = Ee−u·Aρ , (100)

where continuous jumps have a common joint LST γ(u) = Ee−u·X1 . In the spirit of
Theorem 6, it has been shown the following holds.

Theorem 7. If at least one component of u has a positive real part, then for each W ∈ W where the
permutation p is the identity function, then

ΦW(u) = Ee−u·Aρ 1W

= Hχ

(
1

1− γ

r1

∑
l=0

(−1)l ∑
J⊂Sj
‖J‖1=l

γT2∪J

n

∏
j=2

1
1− ΓTj

rj

∑
l=0

(−1)l ∑
J⊂Sj
‖J‖1=l

ΓTj∪J

)
(101)

where γ = γ(u + χ), γB = γ
(
u + χB), and ΓB = γ

(
χB) for B ⊆ {1, ..., k}.
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The result readily extends to the situation where p is any permutation, hence giving
us an expression for ΦW for any weak ordering W ∈ W .

The proof is a somewhat trivial extension to the proof of Theorem 6, but the much
larger challenge beyond the work in [112] is to find Φρ by summing the ΦW terms over all
weak orderings W ∈ W ,

Φρ(u) = ∑
W∈W

ΦW(u) (102)

Very recently, this problem has been solved in [112] exploiting an interesting recursive
pattern in the way in the expressions ΦW simplify when added together. The result is
formulated below.

Theorem 8. If at least one component of u has a positive real part, then

Φρ(u) = Ee−u·Aρ = Hχ

(
γ(u)− γ

1− γ

)
. (103)

This result has a remarkably simple formula, but an expression analogous to γ(u)−γ
1−γ is

common to many of the other results herein when the pre-exit terms, passive components,
and ξρ terms are omitted from the functional. As such, this theorem most of the time unifies
insensitive functionals above, and confirms the conjecture of Dshalalow and Liew [59,60]
about a model with k active components.

Of course, many embellishments are possible, such as adding the pre-exit terms,
passive components, and ξρ terms to the functional to seek a fuller functional

Φρ(ξ, α, φ, β, ψ) = Eξρe−α·Aρ−1 eiφ·Pρ−1 e−β·Aρ eiψ·Pρ (104)

This is a simple extension of Theorem 8, which will appear in [112]

6. Time Sensitive Analysis of Random Walks

In several models outlined above, particularly those studied by the authors in [65,66]
and outlined in Section 3, considered a process running in real time with jumps at times
t1, t2, . . . , which can only be observed upon an independent delayed renewal process τ0, τ1,
. . . rather than in real time. In this case, the exit of the process from a k-dimensional rectan-
gular region was studied upon the pre-exit observation time and the post-exit observation
time but access to the real exit was unavailable. This approach introduces some insur-
mountable uncertainty dependent on the crudeness of the observation process {τn}∞

n=1.
A sequence of papers, Dshalalow and his collaborators [50,68,69,73–76,113] pursue

methods referred to as time sensitive analysis that try to offer more precise look into the
intermediate time period between the pre-exit observation and post-exit observation times
during which the real time exit actually occurs, to glean some further insights about the
process upon its exit.

The simplest case of this approach is the study of a one-dimensional discrete random
walk by the authors in 2016 [113], where we have a random measure S = ∑∞

n=0 anεtn where
an : Ω→ Z+ are independent and identically distributed non-negative random variables,
and study the continuous-time Poisson process with parameter λ,

S(t) =
∞

∑
n=0

anεtn([0, t]), (105)

where each an has a common probability-generating function g(z) = Ezan . S(t) is referred
to as the real time stochastic process. The time insensitive methods rely upon study of the
process S(t) through its observed values

Sn = S(τn), (106)



Mathematics 2021, 9, 1148 30 of 38

where the point process τ0, τ1, ... is delayed renewal process representing the observation
times of S(t). As a delayed renewal process, the inter-observation times, ∆0 = τ0 and
∆n = τn − τn−1, n ∈ N, are independent, and the times for n ≥ 1 are identically distributed.
Denote the Laplace–Stieltjes transforms of each as L0(θ) = Ee−θτ0 and L(θ) = Ee−θ∆1 , each
with Re(θ) ≥ 0.

Then, the increments of the Poisson process between observations satisfy

γ0(z, θ) = E
[
zS(τ0)e−θτ0

]
= L0[θ + λ− λg(z)], (107)

γ(z, θ) = E
[
zS(∆1)e−θ∆1

]
= L[θ + λ− λg(z)], (108)

which we assume to be known or readily obtainable.
Given the interval A = [0, M], where M ∈ Z+, we are interested in the index of the first

observed exit of the process from set A, ν =inf{n ≥ 0 : Sn /∈ A}. With the one-dimensional
time insensitive analysis outlined in Section 2, a functional of the form

Φν(u, v, ϑ, θ) = EuSν−1 vSν e−ϑtν−1−θtν (109)

was derived. In contrast, one-dimensional time sensitive analysis focuses on targets of
the form

Φ1
ν(t, u, v, ϑ, θ, y) = EuSν−1 vSν e−ϑτν−1−θ∆ν yS(t)1{t<τν−1}, (110)

Φ2
ν(t, u, v, ϑ, θ, y) = EuSν−1 vSν e−ϑτν−1−θ∆ν yS(t)1{τν−1≤t<τν} (111)

of the value of S upon the observations immediately before and after the real time crossing
S(τν−1) and S(τν), the real time value of the process S(t), and the times of the observations
immediately before and after the crossing τν−1 and τν themselves. Notice that each func-
tional deals with t placed within a particular random time interval, either before τν−1 or
between τν−1 and τν.

In [113], the authors derived formulas for each of these two functionals under a
Laplace transform, which are reproduced below.

Theorem 9. The joint functional Φ1
ν(t, u, v, ϑ, θ, y) of the process S(t) on the interval [0, τν−1)

satisfies

Φ1
ν(t, u, v, ϑ, θ, y) = L−1

x

[
DM−1

s

(
γ(v, θ)− γ(vs, θ)

x + λg(uvs)− λg(uvys)

×
[

γ0(uvs, ϑ)

1− γ(uvs, ϑ)
− γ0(uvys, x + ϑ)

1− γ(uvys, x + ϑ)

])]
(t) (112)

Theorem 10. The joint functional Φ2
ν(u, v, ϑ, θ, y) of the process S(t) on the interval [τν−1, τν)

satisfies

Φ2
ν(t, u, v, ϑ, θ, y)

= L−1
x

[
DM−1

s

(
γ0(v, θ)− γ0(vy, x + θ)

x + λg(v)− λg(vy)
− γ0(vs, θ)− γ0(vys, x + θ)

x + λg(vs)− λg(vys)

+
γ0(uvys, x + θ)

1− γ(uvys, x + θ)

[
γ(v, θ)− γ(vy, x + θ)

x + λg(v)− λg(vy)

− γ(vs, θ)− γ(vys, x + θ)

x + λg(vs)− λg(vys)

])]
(t) (113)

The results are each under a Laplace transform, so it is necessary to evaluate an
additional inverse operator to extract probabilistic results from this expression, but they
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provide a path to some deeper insights than the time sensitive analysis, although they are
a bit more of a challenge to derive, as we see in the following example.

Example 7. To derive practical results, we need merely to specify some details about the real time
process and the delayed renewal process of observation times and then apply the transforms. We will
make the following assumptions.

1. The jump times {t1, t2, ...} form a Poisson point process of rate λ.
2. Inter-observation times ∆n are exponentially distributed with parameter µ, so their LST is

L(z) = µ
µ+z .

3. The marks of the real time process are geometrically distributed with parameter a, so their
PGF is g(z) = az

1−bz where b = 1− a.
4. The initial functional γ0 = 1 (i.e., zero initial state and time).

It turns out that in such special cases, time sensitive analysis can be used to derive explicit formulas
for joint distributions of random quantities associated with the exit. For example, to find the joint
probability mass and distribution function of the exit position of the process and pre-exit observation
time, P{Sν = r, τν−1 > t}, one can find

Φ1
ν(1, v, 0, 0, 0) = E

[
vSν 1{t<τν−1}

]
(114)

explicitly by applying the inverse Laplace transform and D operator before using properties of
probability generating functions to find the function in question as follows.

Proposition 1. Under Assumptions 1–4,

P{Sν = r, τν−1 > t}

=
µ

λ

[
R0r +

aµ

µ + λ

M−1

∑
j=1

Rjr

]
− µ

λ + µ

[
G0R0r +

M−1

∑
j=1

(Gj − Hj−1)Rjr

]

− µ

λ

[
M−1

∑
j=0

M−1−j

∑
i=0

ci1{r=i+j} − (b + c)
M−2

∑
j=0

M−2−j

∑
i=0

ci1{r=i+j+1}

+ bc
M−3

∑
j=0

M−3−j

∑
i=0

ci1{r=i+j+2}

]

+
µ

λ + µ

[
M−1

∑
j=0

Gj

M−1−j

∑
i=0

ci1{r=i+j} −
M−2

∑
j=0

(bGj + Hj)
M−2−j

∑
i=0

ci1{r=i+j+1}

+ b
M−3

∑
j=0

Hj

M−3−j

∑
i=0

ci1{r=i+j+2}

]
, (115)

where c = bµ+λ
µ+λ ,

Rjr =


0, if r < j
1, if r = j
(c− b)cr−j−1, if r > j

(116)

Gj = bj
j

∑
k=0

(
j
k

)( a
b

)k[
P(k, λt) +

µ

λ
P(k + 1, λt)

]
(117)

Hj = bj+1
j

∑
k=0

(
j
k

)( a
b

)k[
P(k, λt) +

(µ

λ
+

a
b

)
P(k + 1, λt)

]
(118)

and P(k, λt) = 1− Γ(k,λt)
Γ(k) is the lower regularized gamma function.
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While this expression may seem rather large, it is simply a linear combination of terms of
the form Gj, Hj, Rjr, and some constants associated with the process, which is easy to efficiently
compute, as the lower regularized gamma function can be quickly computed to arbitrary precision
with common numerical computing tools.

This was just one example of a result that time sensitive analysis permits. It clearly could
work for any pair of the time and position random variables upon the exit represented in Φ1

ν and Φ2
ν,

noting in particular,

Φ1
ν + Φ2

ν = E
[
uSν−1 vSν e−ϑτν−1−θ∆ν yS(t)1{t<τν}

]
(119)

allows one to use the post-exit observation τν instead of the pre-exit observation, if preferred.

Some later work by the authors in 2019 [76] pursued time sensitive analysis for a
problem extended in several directions: (1) some interesting results are derived for general
processes with independent and stationary increments (ISI), (2) instead of one dimension,
it assumes a active components and b passive components for a process in Ra

+ ×Rb, and (3)
instead of just two times of interest—the pre-exit and post-exit observation previously—the
position of the process and time at any finite number of such random times are included in
the functional here.

The general results are worth mentioning as they have some interesting implications
beyond the scope of this work. Suppose {S(t) : t ≥ 0} is a continuous-time ISI stochastic
process, defined on a filtered probability space (Ω,F , (Ft), P). Let T = {T0, T1, ...} be a
point process in R+ with Tn = Tn−1 + δn where each δn is independent of the prior time
increments δ0, δ1, ..., δn−1 and each is non-negative. In this setting, the following interesting
result is established regarding the functional

Fn(t, v0, v1, ..., vm, y, θ) = E

e
−

m
∑

j=0
(ivj ·S(Tj)+θjδj)

e−iy·S(t)1[Tn−1,Tn)(t)

 (120)

for each n = 1, ..., m assuming vj, y ∈ Ra+b and θ = (θ0, ..., θm) ∈ Cm+1
+ , where we denote

C+ = {z ∈ C :Re(z) ≥ 0}. This is a joint characteristic function of the ISI process S(Tj) at
each time in T with j ≤ m, each corresponding random time increment δn, and the real
time value of the process S(t), restricted to times in [Tn−1, Tn).

Denote the Laplace transform of Fn(t, v0, v1, ..., vm, y, θ) as

F∗n (x, v0, v1, ..., vm, y, θ) = Lt(Fn(t, v0, v1, ..., vm, y, θ))(x). (121)

Theorem 11. For an independent and stationary increments process S(t) on the trace σ-algebra
F ∩ {Tn−1 ≤ t ≤ Tn}, where T is independent of Ft, the functional Fn satisfies

F∗n (x, v0, v1, ..., vm, y, θ)

=
n−1

∏
j=0

φj(bj + y, θj + x)E
[
e−θnδn ψ(bn + y, bn, δn, x)

] m

∏
j=n+1

φj(bj, θj) (122)

under the notation bj = Σm
j=0vj,

φj(b, θ) = E
[
e−ib·S(δj)−θδj

]
, (123)

ϕ(b, t) = E
[
e−ib·S(t)

]
, (124)

ψ(b + y, b, r, x) =
(

e−x(·)ϕ(b + y, ·)
)
∗ ϕ(b, ·)(r). (125)
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This result gives a formula for a joint functional on some m independent random
times of interest of a very general stochastic process S(t). If the process is assumed to be a
collection of marked Poisson processes, the result simplifies to an interesting result.

Corollary 1. If S(t) is made up of d = a+ b parallel marked Poisson processes with rates λ1, ..., λd
and T is independent of Ft, then on the trace σ-algebra F ∩ {Tn−1 ≤ t ≤ Tn}, the functional
Fn satisfies

F∗n (x, v0, v1, ..., vm, y, θ)

=
n−1

∏
j=0

φj(x + θj + λ ·G(bj + y))
φn(θn + λ ·G(bn))− φn(x + θn + λ ·G(bn + y))

x + λ·(G(bn + y)−G(bn))

×
m

∏
j=n+1

φj(θj + λ ·G(bj)), (126)

where φj(θ) = E
[
e−θδj

]
, gj(b) = E

[
e−ibXmj

]
, and G(b) = (1− g1(b1), ..., 1− gd(bd)).

Suppose next the process has two active components, a = 2, and we will make some
additional assumptions to turn the process S(t) into a random walk and review the related
results from [76].

Consider the random measure

S =
∞

∑
n=0

(
a1

n, a2
n, pn

)
εtn , (127)

where the jumps
(
a1

n, a2
n, pn

)
: Ω → R+ ×R+ ×Rb are independent and identically dis-

tributed non-negative random vectors, and we study the stochastic process

S(t) =
∞

∑
n=0

(
a1

n, a2
n, pn

)
εtn([0, t]), (128)

where each jump has a common joint transform G(z). The time insensitive methods rely
upon study of the process S(t) through its observed values

Sn = S(τn) =
n

∑
j=0

Xj (129)

where the point process τ0, τ1, . . . is delayed renewal process representing the observation
times of S(t) with initial LST L0(θ) = Ee−θτ0 and common LST L(θ) = Ee−θ∆1 for the
inter-observation times. We can represent the joint transforms of Xn as

γ0(v, ϑ) = Ee−iv·X0−ϑτ0 (130)

γ(v, ϑ) = Ee−iv·X1−ϑ∆1 (131)

for n ≥ 1, which we assume to be known or readily obtainable.
Given the rectangular cylinder A = [0, M1] × [0, M2] × Rb, where M1, M2 ∈ R+,

we are interested in the index of the first observed exit of the process from set A, ν =
inf{n ≥ 0 : Sn /∈ A}, and we will target the time sensitive functionals

Φ1
ν(t, u, v, θ0, θ, y) = E

[
e−iu·Sν−1−iv·Sν−θ0τν−1−θ∆ν−iy·S(t)1[0,τν−1)

(t)
]

(132)

Φ2
ν(t, u, v, θ0, θ, y) = E

[
e−iu·Sν−1−iv·Sν−θ0τν−1−θ∆ν−iy·S(t)1[τν−1,τν)(t)

]
(133)

of the positions of the process upon the pre-exit and post-exit observations, the position at
the real time t, and the pre-exit and post-exit times themselves, restricted to the random
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time intervals [0, τν−1) before the pre-passage times and [τν−1, τν) between the pre-exit and
post-exit times.

Through a stochastic summation over a conveniently chosen partition of the sample
space, Corollary 1 can be used to derive these functionals in the case where the components
of the process are marked Poisson processes.

Theorem 12. Let S(t) be the constant interpolation of the process embedded in a process made up
of 2 + b parallel marked Poisson processes of rates λ1, . . . , λ2+b where the two active components
are discrete, continuous, or mixed. For the process on the trace σ-algebra F ∩ {t < τν−1}, the joint
functional Φ1

ν(t, u, v, θ0, θ, y) satisfies

Lt

(
Φ1

ν(t, u, v, θ0, θ, y)
)
(x)

= Hs

(
γ0(u + v + s + y, x + θ0)

x + λ·(G(u + v + s)−G(u + v + s + y))
[γ(v, θ)− γ(v + s, θ)]

×
[

1
1− γ(u + v + s, θ0)

− 1
1− γ0(u + v + s + y, x + θ0)

]
+

γ0(u + v + s, θ0)− γ0(u + v + s + y, x + θ0)

x + λ·(G(u + v + s)−G(u + v + s + y))
γ(v, θ)− γ(v + s, θ)

1− γ(u + v + s, θ0)

)
(M). (134)

Theorem 13. Let S(t) be the constant interpolation of the process embedded in a process made up
of 2 + b parallel marked Poisson processes of rates λ1, ..., λ2+b where the two active components are
discrete, continuous, or mixed. For the process on the trace σ-algebra F ∩ {τν−1 ≤ t < τν}, the
joint functional Φ2

ν(t, u, v, θ0, θ, y) satisfies

Lt

(
Φ2

ν(t, u, v, θ0, θ, y)
)
(x)

= G−1
s

(
γ0(v + y, x + θ)− γ0(v, θ)

x + λ·(G(v)−G(v + y))
− γ0(v + s + y, x + θ)− γ0(v + s, θ)

x + λ·(G(v + s)−G(v + s + y))

+
γ0(u + v + s + y, x + θ0)

1− γ(u + v + s + y, x + θ0)

×
[

γ(v + y, x + θ)− γ(v, θ)

x + λ·(G(v)−G(v + y))

− γ(v + s + y, x + θ)− γ(v + s, θ)

x + λ·(G(v + s)−G(v + s + y))

])
(M). (135)

The expression of Theorem 13 [76] is clearly very similar to the one dimensional time
sensitive result from Theorem 10 [113], but this one happens to be for a continuous problem.
Indeed, this expression actually is in a similar form to the time insensitive functionals of
Theorem 1, Theorem 2 [65], and Theorem 4 [106], a common thread running throughout
much of the work discussed in this article.
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