PHONON POLARITON ENHANCED INFRARED WAVEGUIDES

by

Yuchen Yang

Bachelor of Science
Electrical Engineering
Century College, Beijing University of Posts and Telecommunications
2010

Master of Science
Electrical Engineering
Florida Institute of Technology
2012

A dissertation
submitted to the College of Engineering and Science of
Florida Institute of Technology
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in
Electrical Engineering

Melbourne, Florida
December, 2018
The author grants permission to make single copies
We the undersigned committee

hereby approve the attached dissertation,

“Phonon Polariton Enhanced Infrared Waveguides”

by

Yuchen Yang

Brian A. Lail, Ph.D.
Professor
Computer Engineering and Sciences
Major Advisor

Ming Zhang, Ph.D.
Professor
Aerospace, Physics and Space Sciences

Ivica Kostanic, Ph.D.
Associate Professor
Computer Engineering and Sciences

Josko Zec, Ph.D.
Associate Professor
Computer Engineering and Sciences

Philip J. Bernhard, Ph.D.
Professor and Head
Computer Engineering and Sciences
Abstract

Title: Phonon Polariton Enhanced Infrared Waveguides

Author: Yuchen Yang

Major Advisor: Brian A. Lail, Ph.D.

The need for robust, reliable and sensitive terahertz (THz) sources and detectors has motivated the research into waveguiding structures. The increasing adoption of micro- and nanofabricated optical components addresses the critical challenge of guiding light with subwavelength confinement. Surface plasmon polariton (SPP) waveguides are among the most promising candidates for manipulating light on subwavelength scales and harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, the metal in the waveguide yields very weak or nonexistent response in the mid and long wave infrared range, since metal in this region is very lossy and has large magnitude real and imaginary permittivities. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro- and nano-fabrication pursuits.

Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced
propagation length. A hybrid waveguide structure at LWIR based on an eigenmode solver approach in Ansys HFSS is presented. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is studied.

In recent years, extensive research has been conducted on hexagonal boron nitride (h-BN), which has shown h-BN to have naturally occurring subwavelength-volumetrically-confined hyperbolic phonon polaritons (HPhPs) and surface phonon polaritons (SPhPs). First, we have designed a hybrid phononic waveguide containing a hyperbolic h-BN slab lying on a lossless dielectric substrate coupled with a cylinder dielectric waveguide in the air gap and the SPhP mode results in an extremely confined hybrid phononic mode. The coupling between photonic cylinder and phononic surface enhances the confined modal area up to $10^{-3} \lambda_o^2$ (λ_o is the free-space wavelength) and enables propagation distances up to more than two orders of magnitude above the operational wavelength. In order to improve the waveguide properties, the long range phonon polariton has been adopted in a new design. This work presents numerical results for both long- and short-range phononic volumetric polariton modes in a slab of h-BN. A hybrid long-range phononic waveguide results when two identical dielectric cylinder wires symmetrically placed on each side of the h-BN slab are coupled to the long-range HPhP mode. Based on analytical coupled-mode theory and computational finite element analysis, we have investigated the
modal characteristics of the hybrid long-range phonon polaritonic waveguide. The strong coupling between the high index cylindrical waveguide mode and the HPhPs in a h-BN thin film, subwavelength modal area can be achieved which is approximately $10^{-2}\lambda_0^2$ while enabling propagation distances up to $370\lambda_0$.
Table of Contents

Abstract .. iii
List of Figures .. viii
List of Symbols ... xiii
List of Abbreviations .. xv
Acknowledgment .. xvii
Dedication .. xix

Chapter 1

Introduction .. 1

1.1 Background ... 1
1.2 Motivation ... 2
1.3 Layout of the Dissertation Document .. 5

Chapter 2

Surface phonon polaritons fundamentals and methods ... 7

2.1 Introduction ... 7
2.2 SPhP existence requirement .. 9

Chapter 3

Infrared surface phonon polariton waveguides on SiC substrate ... 23

3.1 Polar material SiC properties in reststrahlen band .. 23
3.2 Surface phonon polaritons (SPhPs) waveguides .. 25
3.3 Propagating modes analysis .. 27
3.4 Waveguide configuration and numerical simulations .. 30
3.5 Comparison with the hybrid waveguide at different wavelength .. 35

Chapter 4

Hybrid phononic waveguide using hyperbolic boron nitride ... 39

4.1 Hexagonal boron nitride properties ... 39
4.2 Geometry and modal properties for the proposed hybrid phononic waveguide 43
4.3 Coupling characteristics between surface phonon polariton and dielectric waveguide 49
List of Figures

Fig. 2.1. Surface wave excitation at the interface between dielectric and polar dielectric. The field in y direction is said to be evanescent, prevents power from propagating away from the surface...9

Fig. 2.2. Interface between dielectric and polar dielectric material.10

Fig. 2.3. FEM waveguide analysis. ...19

Fig. 2.4. Eigenmode solution in HFSS..22

Fig. 3.1. Real (blue) and imaginary (red) parts of the dielectric permittivity of SiC. ..24

Fig. 3.2. Phonon polariton dispersion curve. The black curve demonstrated the bulk SiC dispersion relation and the red line is surface phonon polariton. The dished horizontal lines indicate the LO and TO frequency locations. The red dashed diagonal line exhibit the dispersion of photons in air and in the high and low frequency limit of SiC in blue. ..24

Fig. 3.3. Hybrid SPPs model [1]. A dielectric cylindrical nanowire of permittivity ε_c and diameter d is separated from a metallic half-space of permittivity ε_m by a nanoscale dielectric gap of permittivityε_d and width h. ..26

Fig. 3.4. Hybrid SPhP waveguide geometry. ..27

Fig. 3.5. Different view of the hybrid waveguide structure.30

Fig. 3.6. Analysis model of a unit cell. ...31
Fig. 3.7. SiC property editing in HFSS ...32

Fig. 3.8. Modal area, A_m/A_0 versus the Si thickness h for different thickness of the BCB layer d ...33

Fig. 3.9. The hybrid mode’s propagation distance versus the Si thickness h for different thickness of the BCB layer d ...34

Fig. 3.10. (a) Complex magnitude of H for $[h,d] = [1.35,1] \mu m$. (b) $[h,d] = [1.35,1.5] \mu m$. (c) $[h,d] = [1.35,2] \mu m$. (d) $[h,d] = [1.35,2.5] \mu m$. (e) $[h,d] = [2.65,1] \mu m$. (f) $[h,d] = [2.65,1.5] \mu m$. (g) $[h,d] = [2.65,2] \mu m$. (h) $[h,d] = [2.65,2.5] \mu m$. ...34

Fig. 3.11. H-Field distribution for $d = 0.25 \mu m$ (a) and $d = 2 \mu m$ (b).36

Fig. 4.1. The crystal lattice of hexagonal boron nitride consists of hexagonal rings forming thin parallel planes. Atoms of boron (B) and nitrogen (N) are covalently bonded to other atoms in the plane with the angle 120° between two bonds. The planes are bonded to each other by weak van der Waals forces [24].39

Fig. 4.2. Derived real parts of the permittivity tensor components of h-BN. The Type I lower and II upper reststrahlen band are shaded [35].41

Fig. 4.3. Dispersion of the SPhP mode of the flat h-BN-air boundary.42

Fig. 4.4. The hybrid mid-IR waveguide which includes a dielectric cylinder of diameter d placed at a gap height h above an h-BN slab on a dielectric substrate. 43
Fig. 4.5. (a) Modal area as a function of cylinder diameter d for different gap height h. (b) Hybrid propagation distance as a function of cylinder diameter d for different gap height h.

Fig. 4.6. Electromagnetic energy density distribution for (a) $[d, h] = [2.5, 1] \mu m$, (b) $[d, h] = [1.4, 0.25] \mu m$, (c) $[d, h] = [1.4, 0.1] \mu m$ and (d) $[d, h] = [1.4, 0.01] \mu m$.

Fig. 4.7. Effective index of the hybrid waveguide for different gap height h versus cylinder diameter d. The dashed line indicates the index of the SPhP mode n_{SPhP}.

Fig. 4.8. The dependence of coupling strength κ on cylinder diameter d and gap height h.

Fig. 4.9. Normalized energy density along z axis at wavenumber (a) 1400 cm^{-1} (b) 1426 cm^{-1} and (c) 1483 cm^{-1}. (d) Normalized energy density at $z = -d/2$ for different wavenumbers.

Fig. 4.10. (a) Critical angle θ of the hyperbolic polaritons propagating inside the h-BN slab at 1400 cm^{-1} for $[d, h] = [1.4, 0.1] \mu m$. (b) Frequency-dependent directional angles of the hyperbolic polaritons, where θ_1 is at 1400 cm^{-1}, θ_2 at 1426 cm^{-1} and θ_3 at 1483 cm^{-1}.

Fig. 5.1. Schematic illustration of the proposed hybrid long-range phonon polariton waveguide which includes two identical GaAs cylinder wires with diameter d symmetrically placed on each side of a thin h-BN slab are separated with a spacer.
height h. The h-BN slab has thickness of t and this waveguide is embedded in air at mid-infrared wavelength 6.6μm.

Fig. 5.2. (a) The effective indices as a function of h-BN slab thickness t for hybrid and non-hybrid LRHPhP and SRHPhP waveguides. (b) The propagation distance for hybrid and non-hybrid LRHPhP and SRHPhP changing with t. The solid lines and broken lines represent long- and short-range HPhPs, respectively. The colored curves (red and green) represent hybrid waveguides for different spacer heights h. The black lines represent a h-BN thin slab embedded in low dielectric material exhibiting long and short range HPhPs.

Fig. 5.3. (a) Normalized modal area (A_m/A_0) versus cylinder wire diameter d for different spacer height h (colored lines), compared with a pure cylinder mode (black line). (b) Hybrid propagation distance versus cylinder wire diameter d for different spacer height h (colored lines), compared with LRHPhP modes in Air-hBN-Air is denoted by the black dashed line.

Fig. 5.4. Electromagnetic energy density distribution for (a) [d,h] = [2.5, 0.25] μm, (b) [d,h] = [1, 0.25] μm, (c) [d,h] = [1, 0.01] μm and (d) [d,h] = [1.5, 0.01] μm. The lower right-hand corner shows the magnetic field vectors for the hybrid LRHPhP waveguides.

Fig. 5.5. Normalized energy density along x = 0 [dashed line in inset in (a)] for h = 0.01μm (a), 0.05μm (b), 0.1μm (c), 0.25μm (d) shows the confinement in the air spacer. The shaded grey and blue areas represent the two dielectric wires and h-BN.
slab regions, respectively. The energy density along y = (t/2) + h [dashed line inset in (e)] for h = 0.01µm (e), 0.05µm (f), 0.1µm (g), 0.25µm (h)..........................71

Fig. 5.6. Effective index of the hybrid LRHPhP waveguide for a range of spacer height h versus cylinder wire diameters d, n_{hyb}(colored lines). For comparison, the effective indices of pure cylinder wire, n_{wire} (black solid line), and pure LRHPhP, n_{LRHPhP} (black dashed line) are plotted...73

Fig. 5.7. (a) The cylinder mode character |a + (d, h)|² depends on wire diameter d from Eq. (5.3) for different spacer height h. (b) The dependence of coupling strength κ on cylinder wire diameter d and spacer height h from Eq. (5.4)..........................76
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>m</td>
<td>Wavelength</td>
</tr>
<tr>
<td>\vec{E}</td>
<td>V/m</td>
<td>Electric field intensity</td>
</tr>
<tr>
<td>\vec{H}</td>
<td>A/m</td>
<td>Magnetic field intensity</td>
</tr>
<tr>
<td>\vec{j}_{ext}</td>
<td>A/m2</td>
<td>External current densities</td>
</tr>
<tr>
<td>\vec{D}</td>
<td>C/m2</td>
<td>Electric flux density</td>
</tr>
<tr>
<td>\vec{B}</td>
<td>Wb/m2</td>
<td>Magnetic flux density</td>
</tr>
<tr>
<td>$\rho_{\text{ev, ext}}$</td>
<td>C/m3</td>
<td>External charge density</td>
</tr>
<tr>
<td>ρ_{mv}</td>
<td>Wb/m3</td>
<td>Magnetic charge density</td>
</tr>
<tr>
<td>ε_r</td>
<td>------</td>
<td>Relative permittivity</td>
</tr>
<tr>
<td>ε</td>
<td>F/m</td>
<td>Permittivity</td>
</tr>
<tr>
<td>μ</td>
<td>H/m</td>
<td>Permeability</td>
</tr>
<tr>
<td>β</td>
<td>rad/m</td>
<td>Phase constant</td>
</tr>
<tr>
<td>κ</td>
<td>------</td>
<td>Decaying parameter</td>
</tr>
<tr>
<td>ω</td>
<td>rad/m</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>n_{eff}</td>
<td>------</td>
<td>Effective index</td>
</tr>
<tr>
<td>Q</td>
<td>------</td>
<td>Quality factor</td>
</tr>
<tr>
<td>γ</td>
<td>------</td>
<td>Propagation constant</td>
</tr>
<tr>
<td>α</td>
<td>Np/m</td>
<td>Attenuation constant</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>A_m</td>
<td>μm^2</td>
<td>Modal area</td>
</tr>
<tr>
<td>L</td>
<td>μm</td>
<td>Propagation length</td>
</tr>
<tr>
<td>$</td>
<td>a</td>
<td>^2$</td>
</tr>
<tr>
<td>W_m</td>
<td>J</td>
<td>Electromagnetic energy</td>
</tr>
<tr>
<td>$W(\vec{r})$</td>
<td>J/m^3</td>
<td>Local energy density at the position \vec{r}</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THz</td>
<td>Terahertz</td>
</tr>
<tr>
<td>SPP</td>
<td>Surface plasmon polariton</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-infrared</td>
</tr>
<tr>
<td>SPhP</td>
<td>Surface phonon polariton</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon carbide</td>
</tr>
<tr>
<td>LWIR</td>
<td>Long-wave infrared</td>
</tr>
<tr>
<td>BCB</td>
<td>Benzocyclobutene</td>
</tr>
<tr>
<td>h-BN</td>
<td>Hexagonal boron nitride</td>
</tr>
<tr>
<td>HPhP</td>
<td>Hyperbolic phonon polariton</td>
</tr>
<tr>
<td>Mid-IR</td>
<td>Mid-infrared</td>
</tr>
<tr>
<td>SNOM</td>
<td>Scanning near-field optical spectroscopy</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>IHI</td>
<td>Insulator-hyperbolic boron nitride-insulator</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>TO</td>
<td>Transverse optical</td>
</tr>
<tr>
<td>LO</td>
<td>Longitudinal optical</td>
</tr>
<tr>
<td>TE</td>
<td>Transverse electric</td>
</tr>
<tr>
<td>TM</td>
<td>Transverse magnetic</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HFSS</td>
<td>High frequency structure simulator</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>vDW</td>
<td>Van der Waals</td>
</tr>
<tr>
<td>LRHPHP</td>
<td>Long-range hyperbolic phonon polariton</td>
</tr>
<tr>
<td>SRHPHP</td>
<td>Short-range hyperbolic phonon polariton</td>
</tr>
<tr>
<td>GaAs</td>
<td>Gallium arsenide</td>
</tr>
<tr>
<td>FIT</td>
<td>Florida Institute of Technology</td>
</tr>
<tr>
<td>CST</td>
<td>Computer simulation technology</td>
</tr>
</tbody>
</table>
Acknowledgment

There are several people that I would like to acknowledge, without whom my work and research included in this dissertation would have ever been possible. First and foremost, I would like to thank my supervisor Prof. Brian A. Lail for his guidance, support, encouragement and patience in the last six years of my Ph.D. It is my great pleasure and honor to work with him who has extremely strong expertise, broad vision and deep insights and lead me into this amazing world of phonon polaiton waveguides and providing me with such an interesting and challenging topic.

I would like to express my sincere gratitude to my other Ph.D. committee members, Prof. Ivica Kostanic, Prof. Ming Zhang, Prof. Josko Zec, for their time and effort in my research and dissertation.

I am also grateful to all my past and current labmates in the Applied Computational Electromagnetic lab, in particular, Franklin Muriuki Manene, Yuancheng Xu, Michael F. Finch, Navaneeth Premkumar, Shenjie Miao, Claudio A.B. Saunders Filho, Di Xiong, Abdelgader A.A. Alsalhin and Mohamed Kyamo for their fruitful collaboration, invaluable suggestions, worthy discussions and friendship. I would also like to thank all the nice staff in the Electrical Engineering department, for their all-aspect support.
I must give greatest thanks to my parents for their continued and unwavering support, patience and give me advice or just an ear.

Last but not least, my sincere gratitude go to my husband, Wei, for all his love, support and encouragement and always being a light in my life.
Dedication

To my family
Chapter 1

Introduction

1.1 Background

The accepted spectral limits of the mid-infrared (mid-IR) wavelength range vary between subjects and applications. In this work, we will consider the mid-IR wavelength range from 3μm to 50μm. Terahertz (THz) technology research is closely connected with humans. For instance, the changing of global atmospheric detection, especially the density of CO$_2$ in atmosphere, directly affects our understanding of global warming. Therefore, it is significant to precisely detect the content of the gas surrounding earth and the variation of the gas density. These detections correspond to the sensitivity of infrared sensors and infrared imaging technology. Also, biochemical sensing and biochemical detection are now drawing increasing attention. In view of the capability to probe the effects of medicine in the human body and to diagnose disease, it is essential to improve the sensitivity and accuracy of the biochemical sensor and detector. In order to respond to these critical applications, research in the terahertz and in mid-infrared (mid-IR) should be promoted. However, the mid-IR region presents significant technological limitations to the photonic system which is associated with the lack of THz laser sources, efficient low loss waveguide systems and high-sensitive imaging techniques.
Recently, the advancement of waveguides in mid-infrared have received attention. Surface plasmon polariton (SPP) waveguides have been studied in many designs in the optical spectrum but with limited performance in the mid-IR region. In this research, the surface phonon polariton (SPhP) will be applied since the IR materials supporting SPhP coupling in dielectric could eliminate the metallic losses in SPP waveguides.

Surface phonon polaritons can be excited in polar dielectric crystals and support sub-diffraction-limited modes. The potential technological advantages of these polar materials are applied in propagating surface modes in waveguides and novel metamaterial designs which can achieve low-loss, mode-confined waveguides and metamaterials in the mid-infrared spectral region. The structure of the waveguide and the material analysis is the core feature to characterize the design, with the goal of realizing potential applications.

1.2 Motivation

The temporal resolution of detector and the study of spectroscopy motivates research into infrared (IR) and optical structures capable of guiding light with sub wavelength confinement [1, 2]. There are numerous studies of surface plasmon polariton waveguides [1, 3, 4, 5], and they have stable property applications such as plasmonic nanolithography [6], near-field scanning optical spectroscopy (SNOM) [7], data storage [8], and biosensing [9]. The SPPs are transverse surface charge waves
accompanying electromagnetic fields localized at an interface between a metal and a dielectric at the visible and near-IR region [10, 11]. However outside the optical region the benefit of SPPs start to disappear. First, metal in IR/THz inherently provide a large permittivity that leads to poor confinement of SPP fields. On the other hand, the losses of the metal always exists, which causes the plasmonic response of the metal to be either far too weak or nonexistent at lower frequencies (mid-IR range). Several studies have considered traditional microstrip and two-wire transmission line structures, however, metal losses lead to unacceptably short propagation lengths [12, 13].

A new approach is to eliminate the disadvantages of SPPs by using surface phonon polaritons (SPhPs) - a collective excitation comprised of an electromagnetic (EM) wave coupled with polar lattice vibration [14], whose electromagnetic field decays exponentially away from the interface and thus provides strong confinement [15, 16]. Integrated polaritonics has the potential to revolutionize next-generation devices operating in the THz portion of the electromagnetic spectrum in much the same way that integrated electronics and integrated photonics have revolutionized the microwave and near-infrared regimes, respectively.

The propagation distance of waveguide modes performing in mid-infrared region is limited by the structure and material selection. Nowadays, hexagonal boron nitride (h-BN) manifest low-loss, mid-infrared, natural hyperbolic material and h-BN slab thinned down to approximate 1 nm which may achieve multi-layer waveguide
maintaining long propagation distance similar to nanophotonics in mid-infrared region. Silicon carbide has negative real part permittivity in the reststrahlen band and h-BN has two spectral bands with these characteristics which are the lower reststrahlen band and the upper reststrahlen band. Van der Waals heterostructures manifest unusual properties and new phenomena which are considered as 2D crystals are constructed layer by layer; h-BN is one of the materials which can be achieved in the atomic scale. In order to achieve better performance in an infrared waveguide, the waveguide could be constructed on van der Waals heterostructures and combined with phonon waveguide. There is a wide range of study in guiding light in the nanoscale, for example one dielectric wire embedded above in close proximity to a surface and interacting with phonon polariton modes, and there are other potential structures expected to achieve the subwavelength confinement and relatively large propagation distances. By maintaining a gap between two dielectric wires which may give a major part of the electromagnetic field confined in the gap due to external reflections provided by interference effects.

Photonic circuits in the mid-infrared spectral range are relatively unexplored compared with studies in the visible and near-IR regions. Photon energies in the mid-IR spectrum match well with molecular vibrations which enable chemical and gas sensing. Waveguiding structures producing hybrid modes that result from the coupling between phonon polariton modes and photonic modes for mid-IR applications hold great potential and need to be studied.
1.3 Layout of the Dissertation Document

This document is a comprehensive report on the research performed at the Applied and Computational Electromagnetics Lab at Florida Institute of Technology (FIT). Chapter 2 presents a theoretical framework that allows us to study the electromagnetic (EM) phenomena related to the hybrid phononic waveguides. We study a numerical formalism that is obtained from the macroscopic Maxwell equations and the finite element numerical approach. We characterize the phonon polariton properties and demonstrate how to obtain an analytical formula for the surface waves. The properties of surface phonon polaritons and long-range phonon polaritons are analyzed. In Chapter 3, a SiC based hybrid waveguide is proposed, modeled, simulated, and discussed. This part of the work is presented at the SPIE 2015 conference (Yuchen Yang, Franklin M. Manene, Brian A. Lail, "Infrared surface phonon polariton waveguides on SiC Substrate", Proceedings of SPIE Vol. 9547, 954723 (2015)) [17]. In Chapter 4, a naturally-occurring hyperbolic response material h-BN is used in a novel hybrid waveguide design. This part of work is presented at Optic Express (Yuancheng Xu, Navaneeth Premkumar, Yuchen Yang, and Brian A. Lail, "Hybrid surface phononic waveguide using hyperbolic boron nitride," Opt. Express 24, 17183-17192 (2016)) [18]. In Chapter 5, a hybrid long-range hyperbolic phonon polariton (HPhP) waveguide consisting of two identical dielectric cylindrical wires placed symmetrically about a h-BN slab embedded in a low-permittivity dielectric medium in the Type II reststrahlen band is designed.
Previously, we designed a hybrid phonon-polariton waveguide using a single dielectric cylinder coupled to h-BN Type II polaritons on low index substrate. Compared with our previous work, our new design is capable of achieving three orders of magnitude larger propagation length while maintaining the same degree of mode confinement. Recent research [19] studied insulator-hyperbolic boron nitride-insulator (IHI) structures in the Type II reststrahlen band. The IHI structure was shown to support long-range propagating polariton modes with propagation lengths higher than a Ag/MgF2 hyperbolic metamaterial waveguide. In our design, we clearly define the properties of hybrid short-range and long-range HPhPs. The results in here also show that the hybrid long-range HPhP structure has much higher modal confinement than IHI structures seen before. This work is presented at Optic Express (Yuchen Yang, Michael F. Finch, Di Xiong, and Brian A. Lail, “Hybrid long-range hyperbolic phonon polariton waveguide using hexagonal boron nitride for mid-infrared subwavelength confinement,” Opt. Express 26, 26272-26282 (2018)) [20]. Chapter 6 draws conclusions and suggestions for future research.
Chapter 2

Surface phonon polaritons fundamentals and methods

2.1 Introduction

A phonon is a quantum of crystal vibrational energy [21]. It can be regarded as an elementary excitation activated by the relative motion of atoms in a crystal [21]. It can be characterized as a quasiparticle of zero spin which at a given temperature of the crystal is governed by the Bose-Einstein distribution function [21]. In order to understand various properties of three-dimensional solids, surfaces, and nanostructured materials, phonon dispersion relations are the fundamental key. A polariton is generated if electromagnetic radiation in crystalline solids interacts with resonant material excitations, including phonon polaritons, plasmon polaritons and exciton polaritons among others. A surface polariton is simply an electromagnetic wave that propagates along the interface between two media [16]. Surface plasmon polaritons, SPPs, which have been widely studied, are electromagnetic waves interacting with free electrons of the conductor and excite surface waves decaying away from the surface. By tuning the structure of the metal surface sub-diffraction confinement of the optical fields can be achieved [22]. Plasmonic studies achieved abundant applications such as improved chemical detection [23] and enhanced
quantum efficiency for detectors in the ultraviolet (UV), visible [24] and near-infrared (NIR) spectral ranges [25, 26, 27, 28, 29, 30]. However, the high optical losses inherent in metals limited the applications. Furthermore, the potential applications which based on plasmonics has been demonstrated in the UV to NIR spectral region, there exists lack of usage beyond NIR since materials provide large negative permittivity causes poor SPP field confinement in the mid-infrared spectrum [31, 32, 33]. In recent years, there are studies using transparent conductive oxides and graphene, in order to identify potential lower loss plasmonic materials [34, 35, 36]. Nevertheless, these materials still require free electrons or holes to sustain the localized electromagnetic fields and thus to have a tendency to be lossy due to the associated fast plasmon decay. By using dielectric materials one can promptly decrease optical losses, but resonators with sub-diffraction-limited optical confinement cannot be achieved using positive permittivity materials [37, 38, 39, 40].

The sub-diffraction confinement of light, low optical losses and operation in the long wavelength infrared region (LWIR) can be simultaneously achieved by using polar dielectric materials which is the result of polar optical phonons, or polar lattice vibrations, interacting with long wavelength incident fields from the mid-IR, creating a surface excitation mediated by the atomic vibrations named surface phonon polaritons (SPhPs). The SPhPs at the interface between a dielectric and polar crystal have combined electromagnetic wave and surface wave characteristics as shown in
Fig. 2.1. Surface wave excitation at the interface between dielectric and polar dielectric. The field in y direction is said to be evanescent, preventing power from propagating away from the surface.

The polar dielectric material has been observed with high reflectivity and negative Re(ε) within the “reststrahlen” band that provide SPhP phenomenon. The reststrahlen band is bound by the transverse optical (TO) and the longitudinal optical (LO) phonon frequencies. The two phonon modes correspond to out-of-phase atomic lattice vibrations with k-vector aligned parallel (LO) and perpendicular (TO) to the incident field, with the positive (negative) charged lattice sites moving with (against) the direction of the field [41].

2.2 SPhP existence requirement

Surface phonon polariton excitations can provide low loss, sub-diffraction-limited optical modes which consist in the long lifetimes of phonon modes in polar
dielectrics. There exist a momentum mismatch between the incident electromagnetic wave and the SPhPs. This mismatch can be solved considering the coupling of the incident field to surface modes through a diffraction grating [42], high index prism [43, 44, 45], scattering from a nearby sub-wavelength particle such as an SNOM tip [46, 36, 47, 48] or via nanostructure of the SPhP material into sub-wavelength particles [49, 50, 51, 41]. The propagating modes will be discussed. In order to comprehend the effect of the SPhP in a hybrid waveguide, the analysis should start from the classical Maxwell’s equations. The polar dielectric and low index dielectric interface excited by mid-infrared wave structure has dielectric permittivity ε_1 and polar dielectric ε_2 is shown in Fig. 2.2.

![Fig. 2.2. Interface between dielectric and polar dielectric material.](image)

The Maxwell’s equations of macroscopic electromagnetism forms are:
\[\nabla \times \vec{H} = \vec{j}_{ext} + \frac{\partial \vec{D}}{\partial t} \quad (2.1) \]
\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad (2.2) \]
\[\nabla \cdot (\vec{D}) = \rho_{ev,ext} \quad (2.3) \]
\[\nabla \cdot (\vec{B}) = \rho_{mv} \quad (2.4) \]

\(\vec{D}\) is the electric flux density (coulombs/square meter), \(\vec{E}\) is the electric field intensity (volts/meter), \(\vec{B}\) is the magnetic flux density (webers/square meter), \(\vec{H}\) is the magnetic field intensity (amperes/meter), \(\rho_{ev,ext}\) is the external charge density (coulombs/cubic meter), \(\rho_{mv}\) is the magnetic charge density (webers/cubic meter) and \(\vec{j}_{ext}\) is the external current densities (amperes/square meter). The constitutive relations are:

\[\vec{D} = \hat{\varepsilon} \ast \vec{E} \quad (2.5) \]
\[\vec{B} = \hat{\mu} \ast \vec{H} \quad (2.6) \]

where \(\hat{\varepsilon}\) is the time-varying permittivity of the medium (farads/meter) and \(\hat{\mu}\) is the time-varying permeability of the medium (henries/meter). For free space \(\hat{\varepsilon} = \varepsilon_0 = 8.854 \times 10^{-12}\) (farads/meter) and \(\hat{\mu} = \mu_0 = 4\pi \times 10^{-7}\) (henries/meter).

2.2.1 The wave equation

In order to investigate the physical properties of surface phonon polaritons, we have to apply Maxwell’s equations (2.1) - (2.4) to the flat interface between a polar
dielectric (permittivity is negative) and a low index dielectric. Maxwell’s equations
are coupled partial differential equations, therefore each equation has more than one
unknown field. In order to uncouple these equations and combine with boundary
condition to obtain the electromagnetic field solutions the wave equations, which are
the uncoupled second-order partial differential equations, are necessary. In the
following, we will limit ourselves to linear, isotropic and nonmagnetic media and the
permittivity is \(\varepsilon = \varepsilon_r \varepsilon_0 \), where \(\varepsilon_r \) is the relative permittivity.

Equation (2.1) and (2.2) are first order and coupled differential equations. Taking
the curl of both sides of Eq. (2.1) gives Eq. (2.7).

\[
\nabla \times \nabla \times \vec{H} = \nabla \times \vec{j}_{ext} + \nabla \times \frac{\partial \vec{D}}{\partial t} \\
= \nabla \times \vec{j}_{ext} + \varepsilon \frac{\partial}{\partial t} (\nabla \times \vec{E})
\]

(2.7)

Substituting (2.2) into the right side of (2.7) and using the vector identity

\[
\nabla \times \nabla \times \vec{A} = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}
\]

(2.8)
in the left side, we can rewrite (2.7) as

\[
\nabla (\nabla \cdot \vec{H}) - \nabla^2 \vec{H} = \nabla \times \vec{j}_{ext} - \varepsilon \mu_0 \frac{\partial^2 \vec{H}}{\partial t^2}
\]

(2.9)

Substituting
\[\nabla \cdot B = \mu_0 \nabla \cdot \mathbf{H} = \rho_{mv} \rightarrow \nabla \cdot \mathbf{H} = \frac{\rho_{mv}}{\mu_0} \]

(2.10)

into (2.9), we have that

\[\nabla^2 \mathbf{H} = -\nabla \times \mathbf{j}_{\text{ext}} + \varepsilon \mu_0 \frac{\partial^2 \mathbf{H}}{\partial t^2} + \frac{1}{\mu_0} \nabla (\rho_{mv}) \]

(2.11)

A similar process, starting by taking the curl of Eq. (2.2), produces Eq. (2.12).

\[\nabla^2 \mathbf{E} = \varepsilon \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} + \frac{1}{\varepsilon} \nabla (\rho_{ev,\text{ext}}) \]

(2.12)

Therefore, Eq. (2.11) and (2.12) are uncoupled second-order differential equation for \(\mathbf{H} \) and \(\mathbf{E} \) and are referred to as the vector wave equations for \(\mathbf{H} \) and \(\mathbf{E} \). For source-free regions (\(\rho_{mv} = 0 \) and \(\rho_{ev,\text{ext}} = 0 \)) and lossless media (\(\sigma = 0 \)), the wave equations (2.11) and (2.12) simplify to

\[\nabla^2 \mathbf{H} = \varepsilon \mu_0 \frac{\partial^2 \mathbf{H}}{\partial t^2} \]

(2.13)

\[\nabla^2 \mathbf{E} = \varepsilon \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \]

(2.14)

2.2.2 Surface phonon polaritons at a single interface

From the geometry in Fig. 2.2, the wave propagating in \(z \) direction and it is uniform in the \(x \) axis, therefore neither the field nor the structure is changing in \(x \) direction. Therefore, the derivative in the \(x \) direction is equal to zero (\(\partial / \partial x = 0 \)). For harmonic time dependence \(\mathbf{E}(\mathbf{r}, t) = \mathbf{E}(\mathbf{r}) e^{j\omega t} (\partial / \partial t \leftrightarrow j\omega) \) of the electric field. Inserted into Eq. (2.14), this yields

13
\(\nabla^2 \vec{E} + k_0^2 \varepsilon_r \vec{E} = 0 \) \hspace{1cm} (2.15)

where \(k_0 = \frac{\omega}{c} \) is the wave number of the propagating wave in vacuum and \(c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \) is the speed of light. According to the electromagnetic surface problem, the plane \(y = 0 \) coincides with the interface sustaining the propagating waves, which can be described as \(\vec{E}(x, y, z) = \vec{E}(y)e^{j\beta z} \). The complex parameter \(\beta = k_z \) is the propagation constant of the traveling waves and the complex exponential, \(e^{j\beta z} \), indicates that the wave is propagating in the \(z \) direction. Take this expression into Eq. (2.15), the wave equation becomes,

\[
\frac{\partial^2 \vec{E}(y)}{\partial y^2} + (k_0^2 \varepsilon_r - \beta) \vec{E} = 0 \hspace{1cm} (2.16)
\]

Equation (2.16) is the beginning of the general analysis of guided electromagnetic modes in waveguides. In order to use the wave equation for determining the field profile and dispersion of propagating waves, we need to find the expressions for the different field components of \(\vec{E} \) and \(\vec{H} \). From the curl equation of (2.1) and (2.2), the Maxwell’s equations will generate two modes,

Transverse electric (TE\(^z \)):

\[
\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} = j \omega \varepsilon_x E_x \hspace{1cm} (2.17)
\]

\[
\frac{\partial E_x}{\partial z} = -j \omega \mu y H_y \hspace{1cm} (2.18)
\]
\[- \frac{\partial E_x}{\partial y} = -j\omega\mu H_z \quad (2.19)\]

Transverse magnetic (TM)\(^z\):

\[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = -j\omega\mu H_x \quad (2.20)\]

\[\frac{\partial H_x}{\partial z} = j\omega\varepsilon E_y \quad (2.21)\]

\[- \frac{\partial H_x}{\partial y} = j\omega\varepsilon E_z \quad (2.22)\]

From the structure, the boundary condition at the interface between the two media requires the electric flux density to be continuous and the electric flux density \(D(y) = \varepsilon E_y\), since there is no free charge and the permittivity is different on either side of the interface, which gives \(E_y\) must be discontinuous across the interface. From the previous Maxwell’s equations only the TM mode has an electric field component that is normal to the interface, therefore TM polarization is the requirement for the excitation of surface phonon polaritons. If the wave is a surface wave, it must be confined to the surface. This can only happen if the field decays exponentially away from the interface.

This implies the field solution has the following form.

\[
\vec{E}_i(z) = \begin{bmatrix} E_{y,i} \\ E_{z,i} \end{bmatrix} e^{-\kappa_i|y|} e^{j\beta z} \quad (2.23)
\]

\[
\vec{H}_i(z) = H_{x,i} e^{-\kappa_i|y|} e^{j\beta z} \quad (2.24)
\]
Where \(i = 1, 2 \) is for media 1, media 2 and \(\kappa_i \) is the decaying parameter. The wave equation for TM modes is

\[
\frac{\partial^2 H_x}{\partial y^2} + (k_0^2 \varepsilon - \beta) H_x = 0 \tag{2.25}
\]

The expression \(H_x \) has to fulfill the wave Eq. (2.25), take Eq. (2.24) into Eq. (2.25), yielding

\[
k_1^2 = \beta^2 - k_0^2 \varepsilon_{r,1} \tag{2.26}
\]
\[
k_2^2 = \beta^2 - k_0^2 \varepsilon_{r,2} \tag{2.27}
\]

From the electric field boundary conditions which are,

\[
E_{z,1} = E_{z,2} \tag{2.28}
\]
\[
- \frac{j}{\omega \varepsilon_0 \varepsilon_{r,1} \kappa_1} (k_0^2 \mu_{r,1} \varepsilon_{r,1} - \beta^2) H_{x,1} = \frac{j}{\omega \varepsilon_0 \varepsilon_{r,1} \kappa_2} (k_0^2 \mu_{r,2} \varepsilon_{r,2} - \beta^2) H_{x,2} \tag{2.29}
\]
\[
\frac{\kappa_1}{\varepsilon_{r,1}} + \frac{\kappa_2}{\varepsilon_{r,2}} = 0 \tag{2.30}
\]

Magnetic field boundary conditions,

\[
H_{x,1} = H_{x,2} \tag{2.31}
\]
\[
- \frac{j \omega \varepsilon_0 \varepsilon_{r,1}}{\kappa_1} E_{z,1} = \frac{j \omega \varepsilon_0 \varepsilon_{r,2}}{\kappa_2} E_{z,2} \tag{2.32}
\]
\[
\frac{\varepsilon_{r,1}}{\kappa_1} + \frac{\varepsilon_{r,2}}{\kappa_2} = 0 \tag{2.33}
\]

Both conditions give us \(\varepsilon_{r,2} = -\varepsilon_{r,1} \frac{\kappa_2}{\kappa_1} \) which means the surface waves exist only at interfaces between materials with opposite signs of the real part of the
dielectric permittivity. In other words, the SPhP requires a negative real part of the
permittivity of the polar material and only a TM mode could excite surface phonon
dielectric polaritons.

Combining Eq. (2.26), (2.27) and (2.33) gives general dispersion relation of
SPhPs propagating at the interface between the two dielectric medium,

\[
k = k_{sphp} = \left(\frac{\omega}{c}\right) \sqrt{\frac{\varepsilon_{sphp} \varepsilon_a}{\varepsilon_{sphp} + \varepsilon_a}}
\]

(2.34)

Here, \(\varepsilon_{sphp}\) and \(\varepsilon_a\) are the complex permittivity of the phonon-polariton material
(polar material) and the ambient medium, \(k_0 = \omega / c\) is the wave number for light.

2.3 Finite element method

The finite element method (FEM) is a numerical technique to solve complicated
shapes structures which could be described by differential equations but these partial
differential equations hardly be directly solved. However, the equation can be solved
for the simple shapes like triangles, the finite element take advantage of this fact [52].
The single complicated shape could be replaced within approximately equivalent
network of a simple element. In this research the FEM was applied to analysis the
electromagnetic field associated with the hybrid waveguide system by dividing the
entire structure into subdomains. As a result, FEM is manipulative mesh operation to
minimize the error function deal with arbitrary refractive index profiles and
complicated cross-sectional geometries. FEM mathematically finds the approximate
solution of partial differential equations derived from the wave equations for the waveguide by adding up all the subdomain solutions which could realize visualized field distributions. In the following, FEM is used to analyze the propagation characteristics of the waveguide.

The possible wave solution from the Maxwell’s equation is:

$$E(x, y, z) = E(x, y)e^{-i\beta z} \quad (2.35)$$

where β is the propagation constant, and the wave propagate along the z-axis.

The vectorial wave equation can be written in the form of:

$$\nabla^2 E + [k^2 n^2(x, y) - \beta^2]E(x, y) = 0 \quad (2.36)$$

where $\nabla^2 = \partial^2 / \partial x^2 + \partial^2 / \partial y^2$, k is the wave number $k = 2\pi/\lambda_0$, λ_0 is the vacuum wavelength, and $n(x,y)$ is the index distribution of the waveguide. As mentioned previously, the FEM can provide the approximate answer of the complex Eq. (2.36) over equivalent simple element equations with appropriate boundary conditions. The solution of the wave equation can be achieved by solving the E field that satisfies the stationary condition of the form:

$$\psi[E] = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\left(\frac{\partial E}{\partial x} \right)^2 + \left(\frac{\partial E}{\partial y} \right)^2 - (k^2 n^2 - \beta^2)E^2 \right] dx dy \quad (2.37)$$

The mesh will be generated during solve process and the entire structure is divided into N discrete elements. Fig. 2.3 shows the mesh configuration of a three layers waveguide cross-section with $N = 40598$ discretized triangular elements. Note that
through iterative meshing smaller elements of higher density are implemented in regions where the fields have large gradients in order to improve the quality of the approximation without overburdening resource requirements.

![FEM waveguide analysis](image)

Fig. 2.3. FEM waveguide analysis.

The electric field $\vec{E}(x,y)$ in the ith element is approximated by a linear function of x and y:

$$E(x,y)^i = a_0^i + a_1^ix + a_2^iy$$

(2.38)

where a_0^i, a_1^i, a_2^i are constants for the element i, and can be determined based on the properties of the specific element. Each element is constructed by three nodal points generate triangular shape. At each nodal point, the electric field shares the same linear function with the appropriate x and y as in Eq. (2.37). The electric field distribution and the propagation constant for each element were calculated from the Eq. (2.37) and Eq. (2.38) of the entire domain is summarized in this form:
\[\psi = \sum_{l=1}^{N} \psi^l \]

(2.39)

The effective index \(n_{eff} \) of the TM mode in the waveguide is determined by the relation \(n_{eff} = \beta \lambda_0 / (2\pi) \). Mesh is refined at sharply curved edges, abrupt changes in thickness, and structure with different material properties. Therefore, increasing the mesh number at certain area could achieve efficient accurate solution. Nonetheless, the calculation time will be increased. Therefore, the sufficient and appropriate applying mesh operation need to be consideration during the design.

2.4 Eigenmode Solutions in HFSS

In this dissertation, the Ansys HFSS (High Frequency Structure Simulator) is used, which is a 3D FEM electromagnetic simulation software for designing and simulating high-frequency electronic products. HFSS provides two types of solutions which are driven and eigenmode. The eigenmode solver is used in this hybrid waveguide design.

Eigenmodes are the resonances of the structure. The eigenmode solver finds the resonant frequencies of the structure and the fields at those resonant frequencies. The standard eigenproblem is of the form [53]:

\[L\Phi = \lambda M \Phi \]

(2.40)
Where L and M are differential, integral, or vector operators, Φ is the unknown eigenfunction to be determined, λ are the eigenvalues. In HFSS, eigenmode designs cannot contain design parameters that depend on frequency. If a material or boundary condition, varies with frequency, the eigenmode solution procedure will evaluate the frequency dependent property at the user specified minimum frequency. This may limit the accuracy of the solved eigenmodes depending on how significant the property varies from the minimum frequency to the eigen frequency. For every eigenmode solution setup, the number of eigenmode solutions that the solver finds is specified. The eigenmode solver can find up to 20 eigenmode solutions, can find the eigenmodes of lossy as well as lossless structures, and also can calculate the unloaded Q of a cavity. Q is the quality factor, it is a measurement of how much energy is lost in the system. Unloaded Q is the energy lost due to lossy materials and boundary conditions. Since sources are restricted for eigenmode problems, the Q calculated does not include losses due to those sources. HFSS uses the following equation to calculate the approximate quality factor.

\[
Q = \left| \frac{\text{Mag}(freq)}{2 \cdot \text{Im}(freq)} \right| \tag{2.41}
\]

Fig.2.4 shows an example of eigenmode solution in HFSS.
Fig. 2.4. Eigenmode solution in HFSS.

The frequency column in Fig.2.4 lists the real and imaginary parts of the frequency for each solved eigenmode. For lossy eigenmode solutions, a Q column appears, which lists the unloaded quality factor Q computed for each eigenmode.
Chapter 3

Infrared surface phonon polariton waveguides on SiC substrate

3.1 Polar material SiC properties in reststrahlen band

In this study, silicon carbide (SiC) has been used because at mid-infrared frequencies it has desirable material properties. Since its optical response is similar to metals, it is an alternative to metals; its real permittivity is negative and a sharp resonance near 24THz (12.5μm) manifests itself by way of excitation of transverse optical phonons. This will result in a weaker damping and a corresponding sharper resonance. In addition, SiC offers the advantage that environmental conditions affect the lattice parameters, resulting in a change in the phonon polariton spectrum [54]. This enables a broad range of sensor-type applications for the detection of changing environmental parameters, such as temperature and pressure. The optical phonon resonances crystalline silicon carbide (4H-SiC) in the mid-IR spectral range is shown in Fig. 3.1 and the phonon polariton dispersion curve for 4H-SiC /air interface is shown in Fig. 3.2.
Fig. 3.1. Real (blue) and imaginary (red) parts of the dielectric permittivity of SiC.

Fig. 3.2. Phonon polariton dispersion curve. The black curve demonstrated the bulk SiC dispersion relation and the red line is surface phonon polariton. The dashed horizontal lines indicate the LO and TO frequency locations. The red dashed diagonal line exhibit the dispersion of photons in air and in the high and low frequency limit of SiC in blue.
Analogous to metals, the dispersion relation can be approximated as a Lorentz oscillator for polar dielectric crystals [55]:

\[
\varepsilon(\omega) = \varepsilon_\infty \left(1 + \frac{\omega_{\text{LO}}^2 - \omega_{\text{TO}}^2}{\omega_{\text{TO}}^2 - \omega^2 - i\omega\gamma}\right)
\]

(3.1)

where \(\omega_{\text{TO}}\) and \(\omega_{\text{LO}}\) are TO and LO phonon frequencies, respectively. In addition, hBN, c-BN, SiC, SiO\(_2\), Al\(_2\)O\(_3\) and many III-N materials at certain frequencies could provide SPhP modes.

3.2 Surface phonon polaritons (SPhPs) waveguides

As mentioned previously, plasmonic waveguides can confine light in subwavelength scale, it is useful for nanophotonic structures that can minimize the integrated circuit and enhance the efficiency of the spectroscopy. A hybrid plasmonic waveguide for subwavelength confinement structure is shown in Fig.3.3. It is constructed with a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. This hybrid waveguide provides the coupling between plasmonic and dielectric waveguide modes by trapping the energy in the low index dielectric gap with strong confinement. While it provides efficient propagation distance, however this structure is simulated at wavelength is 1550nm [1]. This design is not for the mid-infrared spectrum, however this work provides what many consider to be a seminal reference in hybrid waveguide analysis.
Fig. 3.3. Hybrid SPPs model [1]. A dielectric cylindrical nanowire of permittivity ε_c and diameter d is separated from a metallic half-space of permittivity ε_m by a nanoscale dielectric gap of permittivity ε_d and width h.

For mid-IR applications, surface phonon polaritons take place of the SPPs when SiC replace the metal in the structure since the lattice vibrations of the polar dielectric couple with mid-IR electromagnetic wave to convey surface wave propagation in the hybrid waveguide. The boundary conditions require that the SPhPs only exist in TM modes. The behavior of SPhPs is analogous to both localized and propagating SPPs. The structure of a SPhP waveguide is shown in Fig. 3.4. By considering the fabrication constraints, SiC is usually modelled as a wafer having hundreds of microns thickness because it is hard to modify the size and shape of SiC; the new structure has been considered as a substrate. The design of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, are studied.
3.3 Propagating modes analysis

The SPhP modes intimately rely on crystal lattice structures. Numerous potential geometries for SPP waveguides have been considered, whereas the study of SPhP waveguides has seen little activity such that there is potential for a wide range of unexplored designs and applications. Analogous to SPPs, the coupling between the SPhP modes into the hybrid waveguide modes results in field confinement within the dielectric gap.

The dispersion relation for the SPhP is given by Eq. (2.34) and it can be split into real and imaginary components.
\[k_{\text{SPhP}}(\omega) = \frac{\omega}{c} \left(\frac{\varepsilon'_{\text{sphp}}(\omega) \varepsilon_a}{\varepsilon'_{\text{sphp}}(\omega) + \varepsilon_a} \right)^{1/2} + \frac{j \omega}{c} \left(\frac{\varepsilon'_{\text{sphp}}(\omega) \varepsilon_a}{\varepsilon'_{\text{sphp}}(\omega) + \varepsilon_a} \right)^{2/3} \frac{\varepsilon''_{\text{sphp}}(\omega)}{2(\varepsilon'_{\text{sphp}})^2} \] \hspace{1cm} (3.2)

where \(\varepsilon'_{\text{sphp}}(\omega) \) is the real permittivity, \(\varepsilon''_{\text{sphp}}(\omega) \) is the imaginary permittivity of the SPhPs and \(\varepsilon_a \) is the permittivity of ambient medium. The propagation constant \(\gamma \) is a complex number that includes attenuation constant \(\alpha \) and phase constant \(\beta \). The propagation distance \(L_p \) can be defined as the distance a mode travels before decaying to \(e^{-1} \) of its original power \([1, 56, 57]\),

\[L_p = \frac{1}{2\alpha} \] \hspace{1cm} (3.3)

In addition to this, the attenuation constant, \(\alpha = \text{Im}\{k_{\text{SPhP}}\} \), so the Eq. (3.3) can be rewritten,

\[L_p = \frac{1}{2\text{Im}\{k_{\text{SPhP}}\}} \] \hspace{1cm} (3.4)

In addition to the propagation distance, the field confinement is another important parameter to identify the performance of the hybrid waveguide.

The energy density can be derived from Poynting’s theorem in linear, lossy dispersive media,

\[W_r = \frac{1}{2} \left(\text{Re} \left(\frac{d(E(r) \omega)}{d\omega} \right) |E(r)|^2 + \mu_0 |H(r)|^2 \right) \] \hspace{1cm} (3.5)

Here \(E(r) \) and \(H(r) \) are the electric and magnetic fields, \(\varepsilon(\omega) \) is the electric permittivity, \(\mu_0 \) is the magnetic permeability.
The modal area \((A_m) \) is defined as the ratio of the total modal energy per unit length to the peak energy density along the propagation direction \([1]\).

\[
A = \frac{W_m}{\max[W(r)]} = \frac{1}{\max[W(r)]} \int W(r) d^2r
\]

(3.6)

Mode confinement can be determined by the normalized mode area defined as \(A_m/A_o \) where \(A_o = \frac{\lambda_0^2}{4} \) and \(\lambda_0 \) is the free space wavelength. This compares the mode area to the standard diffraction limit, as in dielectric waveguides.

For a propagating wave consider the propagation constant \(\gamma \) described as \(\gamma = \alpha + j\beta \) and the complex effective refractive index of the mode \(N_{\text{eff}} \) is given by,

\[
N_{\text{eff}} = \frac{\gamma}{\beta_0} = \frac{\alpha}{\beta_0} + \frac{j\beta}{\beta_0} = k_{\text{eff}} + jn_{\text{eff}}
\]

(3.7)

where \(\beta_0 = \frac{2\pi}{\lambda_0} \) is the phase constant of plane waves in free space and \(\lambda_0 \) is the free space wavelength.

For single-interface SPhP, useful expressions are used \([58]\),

\[
n_{\text{eff}} = \frac{\beta}{\beta_0} \approx \left(\frac{\varepsilon'_s\epsilon_{\text{r}}(\omega)\varepsilon_a}{\varepsilon'_s\epsilon_{\text{r}}(\omega) + \varepsilon_a} \right)^{1/2}
\]

(3.8)

\[
k_{\text{eff}} = \frac{\alpha}{\beta_0} \approx \left(\frac{\varepsilon'_s\epsilon_{\text{r}}(\omega)\varepsilon_a}{\varepsilon'_s\epsilon_{\text{r}}(\omega) + \varepsilon_a} \right)^{2/3} \frac{\varepsilon''_s\epsilon_{\text{r}}(\omega)}{2\left(\varepsilon'_s\epsilon_{\text{r}}(\omega)\right)^2}
\]

(3.9)
As shown in previous structures of hybrid surface phonon polariton waveguide, the effective refractive index is non-linearly dependent on the height of the dielectric gap h and the width of the dielectric wire width w.

3.4 Waveguide configuration and numerical simulations

We apply an eigensolver simulation approach in Ansys HFSS, with validation of the method in [59] where results in [41] based on semi-analytical methods of lines were reproduced. We can achieve efficient complex eigen frequencies by changing the phase delay between the boundaries parallel to the propagation direction, whereas the remaining boundaries are combinations of perfect electric and magnetic walls placed $9\lambda_0$ from the wire to leave the hybrid modes unperturbed. The different view of the design is shown in Fig. 3.5 and the simulation of unit cell in HFSS is shown in Fig. 3.6.

Fig. 3.5. Different view of the hybrid waveguide structure.
By tuning the geometry of the structure, we can achieve reasonable propagation length and maintain moderate field confinement. As shown in Fig.3.5 the three-layered hybrid waveguide constructed by the high permittivity rectangular Si wire \(\varepsilon_{\text{Si}} = 11.7 \) (rectangular waveguide) attached on a low permittivity dielectric BCB spacer with permittivity \(\varepsilon_{\text{BCB}} = 2.3 \) on top of a SiC wafer with permittivity \(\varepsilon_{\text{SiC}} = -30.55 + i1.5 \) (phonon waveguide). The material properties need to be assigned, we use SiC as an example. First, open the material browser by clicking ‘Tools’, then click the ‘Materials’, in our design SiC is an isotropic and frequency dependent material not available in the material library, therefore we need to click the
‘View/Edit Materials’. Second, in the first line type in the relative permittivity for SiC. Similarly, the dielectric loss tangent is provided. The example for the SiC property assignment is shown in Fig. 3.7.

![SiC property editing in HFSS](image)

Fig. 3.7. SiC property editing in HFSS.

We have analyzed the influence of the width of the silicon wire (w) on the propagation characteristics of the hybrid SPhP waveguide. If w is set below 2.25µm, we can get lower propagation loss, however, the field would be weakly confined. In contrast, if w is larger than 2.25µm, the mode will be more Si-wire like. In the
following result, w is fixed at 2.25µm and the rectangular wire height h and the spacer height between the wire and the SiC wafer d are varied. The propagation length L (µm), mode area A_m and electromagnetic field distribution at wavelength, $\lambda=12\mu m$ are presented.

Fig. 3.8. Modal area, A_m/A_0 versus the Si thickness h for different thickness of the BCB layer d.
Fig. 3.9. The hybrid mode’s propagation distance versus the Si thickness h for different thickness of the BCB layer d.

Fig. 3.10. (a) Complex magnitude of H for $[h,d] = [1.35,1]\mu\text{m}$. (b) $[h,d] = [1.35,1.5]\mu\text{m}$. (c) $[h,d] = [1.35,2]\mu\text{m}$. (d) $[h,d] = [1.35,2.5]\mu\text{m}$. (e) $[h,d] = [2.65,1]\mu\text{m}$. (f) $[h,d] = [2.65,1.5]\mu\text{m}$. (g) $[h,d] = [2.65,2]\mu\text{m}$. (h) $[h,d] = [2.65,2.5]\mu\text{m}$.
Figure 3.8 and Fig. 3.9 shows the dependence of normalized modal area and propagation distance. For large h, the hybrid waveguides that tend to support low-loss rectangular dielectric waveguide modes with electromagnetic field are mainly confined in the high-permittivity Si wire [Fig. 3.10(e)-(h)]. In this case, the propagation length is much bigger than other modes, but at the cost of much larger mode area (low confinement). At moderate dimensions of h and d, mode coupling results in a new hybrid mode that shows both Si wire and SiC phonon modes; the magnetic intensity field is distributed over both the Si rectangular waveguide and the SiC-BCB interface [Fig. 3.10(a)-(d)]. By keeping the height of Si to be 1.35μm and increasing the height of the BCB spacer d, we can achieve increase in propagation length from 151.06μm to 222.67μm while still keeping the hybrid mode confined [Fig. 3.10(a)-(d)]. We have seen that from the normalized mode area, the lowest mode area is near $h = 1.5\mu m$, for all variations of d. Besides, lower refractive index of the inner BCB dielectric layer will ensure relatively lower propagation loss because the field inside the SiC would much weaker.

3.5 Comparison with the hybrid waveguide at different wavelength

From the previous section, it has been shown that the hybrid SPhP waveguide was able to guide the SPhP modes with favorable mode area and propagation distance due to the involvement of low loss dielectric BCB and interaction with negative permittivity SiC coupling with high index Si. We are also interested in the hybrid
mode characteristics including mode confinement and propagation distance at other wavelengths. The comparison of the field distribution demonstrates at 11.17\(\mu\)m, 11.78\(\mu\)m and 12\(\mu\)m and is shown in Fig.3.11 for dielectric BCB spacer equal to 0.25\(\mu\)m and 2\(\mu\)m.

Fig. 3.11. H-Field distribution for \(d = 0.25\mu\)m (a) and \(d = 2\mu\)m (b).
We have seen that the field distribution is not confined for short Si height but the strongest field is in the BCB spacer in Fig. 3.11(a) top row, by increasing the wavelength there are more fields that are unbounded from the structure. But by increasing the height of Si and keeping other dimensions the same, the field is concentrated close to the spacer. We find that the propagation length in the waveguide at 12μm is 416.65μm, which is longer when compared to 11.61μm at λ=11.17μm. Fig. 3.11(a) bottom row, there is a decrease of the propagation length with increase in frequency, which can be predicted mathematically and consequently numerically by Eq. (3.4). From Fig. 3.11(b) top row, it is seen that that the phonon mode strength increases by increasing the wavelength. At appropriate dimensions the hybrid mode exists, however more hybrid modes can be formed at λ=11.17μm but the propagation distance is much less than the hybrid modes at λ=12μm. Mode area seems to be keeping in with the same trend. This means that the hybrid waveguide has good performance at lower frequencies. An interesting observation is that, propagation lengths deteriorates at wavelengths closer to the phonon resonance of SiC.

3.6 Conclusion

A hybrid surface phonon polariton waveguide by coupling Si and SiC based phonon modes through finite element analysis using an eigenmode solver has been proposed.
By controlling the hybridization of the fundamental mode of a rectangular dielectric wire (Si) and the phonon mode of a dielectric-negative permittivity material (SiC), we achieve field confinement and long-range propagation. The result has been shown that for free-space wavelength \(\lambda = 12\mu m \), propagation length \(L = 18.55\lambda = 222.6\mu m \), while maintaining well-confined modes. Also by comparing the modal area and propagation length for different wavelengths \(\lambda = 11.17\mu m, \lambda = 11.78\mu m, \lambda = 12\mu m \), the best performance of field distribution and propagation distance appears to be for \(\lambda = 12\mu m \).
Chapter 4

Hybrid phononic waveguide using hyperbolic boron nitride

4.1 Hexagonal boron nitride properties

Boron nitride (BN) is a wide band gap III-V compound with prominent chemical stability and physical properties. Hexagonal BN (h-BN) is composed of alternating boron and nitrogen atoms in a honeycomb arrangement, consisting of sp²–bonded two-dimensional (2D) layers [60]. Similar to graphite, each layer of h-BN are held together by weak van der Waals forces while boron and nitrogen atoms are bound by strong covalent bonds. Figure 4.1 shows the hexagonal boron nitride structure [61].

![Hexagonal boron nitride structure](image)

Fig. 4.1. The crystal lattice of hexagonal boron nitride consists of hexagonal rings forming thin parallel planes. Atoms of boron (B) and nitrogen (N) are
covalently bonded to other atoms in the plane with the angle 120° between two bonds. The planes are bonded to each other by weak van der Waals forces [61].

Therefore, by using micromechanical cleavage [62, 63, 64] on bulk BN crystal, h-BN films could be achieved. Few-layer h-BN can also be fabricated by ultrasonication [65] and high-energy electron beam irradiation of BN particles [66]. The ability to deposit one atom thick unit cells of h-BN, essentially producing two dimensional surfaces that support SPhPs [67, 68, 69].

Boron nitride is a naturally hyperbolic dielectric material exhibiting a hyperbolic dispersion whose permittivity tensor possesses both positive and negative principal components. Being a typical low loss and anisotropic material, h-BN exhibits two reststrahlen bands in the mid infrared spectrum: (1) at lower frequency (Type I reststrahlen band $\omega = 746 - 819$ cm$^{-1}$), the real part of out-of-plane permittivity is negative ($\varepsilon_\parallel < 0$) and the in-plane permittivity is positive ($\varepsilon_\perp > 0$); (2) at higher frequency (Type II reststrahlen band $\omega = 1370 - 1610$ cm$^{-1}$), the real part of out-of-plane permittivity is positive ($\varepsilon_\parallel > 0$) and the in-plane permittivity is negative ($\varepsilon_\perp < 0$) [69, 70, 71]. Considerable work has been done to classify these resonances into a distinct lower frequency (Type I) and upper frequency (Type II) reststrahlen band. h-BN possesses a strong surface phonon resonance resulting from a negative permittivity in the upper reststrahlen, or in-plane, band. The plots of the derived permittivity components Re ε_\perp (green curve) and Re ε_\parallel (magenta curve) presented
in Fig. 4.2 verify that \(\text{Re} \varepsilon_\parallel < 0, \text{Re} \varepsilon_\perp > 0 \) in the lower band (\(\approx 12.1-13.2 \mu m \))

while \(\text{Re} \varepsilon_\perp < 0, \text{Re} \varepsilon_\parallel > 0 \) in the upper band (\(\approx 6.2-7.3 \mu m \)) [49].

The excitation and control of these phonons has been studied in [67, 68, 69, 72, 73, 70]. Due to the large spectral separation between the out-of-plane and in-plane phonon resonance they are decoupled and do not interfere with one another. In order to enhance absorption/transmission and field confinement of h-BN polaritons in the areas of sensing and detection, graphene-based h-BN surface plasmon phonon polaritons have been used [74, 75, 76, 77, 78]. The high-field confinement of the tunable graphene plasmons in mid-IR allows for strong coupling with the h-BN
monolayers. However, h-BN structures have not been integrated into hybrid designs for mid-IR waveguide applications. At wavenumber 1400 cm\(^{-1}\), in the in-plane reststrahlen band, the magnitude of the h-BN permittivity is far greater than that of the air. Hence little evanescent field resides in the h-BN region and most of the wave energy flows through the air, significantly reducing, but not entirely eliminating volumetric losses inside the layer. We carried out initial calculations to estimate performance of h-BN as a SPhP supporting candidate. Figure 4.3 depicts the computed dispersion curves of SPhP at a flat h-BN/air interface in the in-plane resonance band. Figure 4.3(inset) shows the region of interest where the data markers represent the wavenumbers at 1400 cm\(^{-1}\), 1426 cm\(^{-1}\) and 1483 cm\(^{-1}\).

Fig. 4.3. Dispersion of the SPhP mode of the flat h-BN-air boundary.
4.2 Geometry and modal properties for the proposed hybrid phononic waveguide

A hybrid phononic waveguide design by coupling h-BN SPhPs with a dielectric waveguide is shown in this section. For the purpose of a hybrid waveguide, we operate around the in-plane resonance owing to the strong surface phonon response on h-BN slab [49]. The hybrid SPhPs propagate over large distances (up to two orders of magnitude more than the operational wavelength) with modal confinement as low as $\sim 10^{-3} \lambda^2$. This approach yields significant improvements to both guided phononics and photonics and has applications in phonon based IR lasers, bio-sensing and interferometry [79] [80] [81].

Fig. 4.4. The hybrid mid-IR waveguide which includes a dielectric cylinder of diameter d placed at a gap height h above an h-BN slab on a dielectric substrate.
Figure 4.4 depicts the proposed hybrid phononic waveguide structure. A high-refractive-index dielectric cylinder waveguide with diameter d is placed above the h-BN slab with nanoscale air gap distance h. The cylinder waveguide is silicon with refractive index $n = 3.42$, and the h-BN slab with an in-plane permittivity $\varepsilon_\perp = -28.12 + 2.91i$ and out-of-plane permittivity $\varepsilon_\parallel = 2.73 + 0.0004i$ at mid-IR wavenumber 1400 cm^{-1}. The simulated SPhP mode is along the interface between air and a 1 μm thick h-BN slab on a dielectric substrate. The interface of h-BN/air supports surface waves in the form of SPhPs as designated by the strong field concentration above the slab. Note that here we only consider the fundamental mode, since higher order modes will only exist in ultrathin h-BN [69]. The h-BN based hybrid phononic waveguide with an air gap presented here can be implemented in suspended waveguide designs akin to those seen in [15].

In the following study, we vary the cylinder diameter, d, and the air gap, h, to control the propagation distance, L_m, and modal area, A_m, while maintaining a transverse magnetic field distribution. The strong mode-coupling in the air gap between the dielectric waveguide cylinder mode and the SPhP mode results in an extremely confined hybrid phononic mode. The entire structure lies on a lossless dielectric substrate of permittivity $\varepsilon_d = 2.25$. It should be noted that SPhP modes can be supported by this h-BN/substrate boundary however in this work we are considering modes in which this additional SPhP mode is suppressed such that the air/h-BN SPhP and the cylinder mode dominate the hybrid coupling.
Figures 4.5(a) and (b) show the modal area A_m and the propagation length L_m of the hybrid phononic mode as a function of the waveguide diameter d and the air gap h. The propagation length L_m and the modal area A_m are calculated from Eq. 3.4 and Eq. 3.6,

$$L_m = [2\text{Im}(k_{hyb}(d, h))]^{-1}$$

(4.1)

$$A_m = \frac{W_m}{\max\{W(\vec{r})\}}$$

(4.2)

where $k_{hyb}(d, h)$ is the wavevector of the hybrid mode and W_m is the integrated electromagnetic energy over the modal distribution. $W(\vec{r})$ is the local energy density at the position \vec{r} given by Eq 3.5. Mode confinement can be gauged by the normalized modal area defined as A_m/A_o where $A_o = \lambda_o^2/4$ and λ_o is the free space wavelength.
Fig. 4.5. (a) Modal area as a function of cylinder diameter d for different gap height h. (b) Hybrid propagation distance as a function of cylinder diameter d for different gap height h.
Figure 4.6 shows the electromagnetic energy density distributions of the hybrid phononic mode for different waveguide diameter d and air gap h. For large d and h (for example, $[d,h] = [2.5, 1] \, \mu m$), the hybrid phononic waveguide supports a low-loss cylinder-like mode with optical energy confined in the dielectric cylinder. Conversely, a small diameter d results in a SPhP-like mode with very weak localization on the h-BN/air interface, suffering loss comparable to that of uncoupled SPhPs. At other cylinder diameters (for example, $[d, h] = [1.4, 0.25] \, \mu m$ and $[1.4, 0.1] \, \mu m$), mode coupling results in a hybrid mode that has both cylinder and SPhP features i.e., its electromagnetic energy is distributed in the cylinder waveguide, the h-BN/air interface and inside h-BN slab. For h in nanometer scale, for example $[d, h] = [1.4, 0.01] \, \mu m$, the cylinder mode is strongly coupled to the SPhP mode, most of the optical energy being concentrated inside the air gap with ultrasmall modal area. The air gap between the cylinder dielectric waveguide and the h-BN slab provides a region of low-index material that can be used to strongly confine and propagate light. This arises from the need to satisfy the continuity of the normal component of electric flux density, D, giving rise to a large amplitude of normal component of electric field in the low-index region of a high-index-contrast interface [82]. Also, the uncoupled SPhP and dielectric geometries amplify this effect by having dominant normal electric field components to the material interfaces.
Fig. 4.6. Electromagnetic energy density distribution for (a) \([d, h] = [2.5, 1]\) μm, (b) \([d, h] = [1.4, 0.25]\) μm, (c) \([d, h] = [1.4, 0.1]\) μm and (d) \([d, h] = [1.4, 0.01]\) μm.
4.3 Coupling characteristics between surface phonon polariton and dielectric waveguide

In order to explain the coupling between SPhP and dielectric cylinder modes, we analyzed the dependence of the hybrid mode’s effective index, \(n_{\text{hyb}}(d, h) \) on \(d \) and \(h \). Figure 4.7 depicts the effective index of the hybrid mode on \(d \) for different gap height \(h \). As expected, the waveguide mode index approaches that of the dielectric cylinder mode and SPhP mode at the extremities of the plot. Meanwhile, the hybrid mode’s effective index is always larger than dielectric cylinder mode and SPhP mode, indicating that the SPhP mode is coupled with the dielectric cylinder waveguide, which induces a much higher effective index. The mode’s effective index can be increased by reducing the gap distance for a fixed \(d \), or enhancing the diameter of the cylinder nanowire, \(d \), for a fixed gap distance, \(h \). This can be explained by the observation that the coupling efficiency is increased between the cylinder and h-BN surface when the \(d \) increases or \(h \) reduces.
In order to explain the coupling efficiency with coupled mode theory, we describe the hybrid eigenmode as the superposition of the cylinder waveguide mode (without h-BN slab) and the SPhP mode (without cylinder) [1].

\[\psi_{hyb}(d, h) = a(d, h)\psi_{cyl}(d) + b(d, h)\psi_{SPhP} \]

(4.3)
Here $a(d, h)$ and $b(d, h)$ are the mode amplitudes of the cylinder mode ψ_{cyl} and the SPhP mode ψ_{SPhP}, respectively, and with $b = (1 - |a|^2)^{1/2}$. The coupled waveguide system can be described as [1],

$$n_{cyl}(d)a(d, h) + \kappa(d, h)b(d, h) = n_{hyb}(d, h)a(d, h) \tag{4.4}$$

$$\kappa(d, h)a(d, h) + n_{SPhP}b(d, h) = n_{hyb}(d, h)b(d, h) \tag{4.5}$$

where $n_{cyl}(d)$ and n_{SPhP} are the effective index of the cylinder mode and SPhP mode, respectively, and $n_{hyb}(d, h)$ is the effective index of the waveguide mode.

According to the coupled-mode theory for the hybrid waveguide, the coupling strength $\kappa(d, h)$ between these two modes can be described as

$$\kappa(d, h) = \sqrt{(n_{hyb}(d, h) - n_{SPhP})(n_{hyb}(d, h) - n_{cyl}(d))} \tag{4.6}$$

Figure 4.8 plots the dependence of coupling strength κ on d and h for the hybrid mode. The coupling strength is maximum when the index of the cylinder mode equals that of the SPhP mode, which can be seen analytically from Eq. (4.6). At a critical diameter d_c for each gap height h, the coupling strength hits its maximum value when the cylinder mode and SPhP mode propagate in phase and the effective optical capacitance of the hybrid system is maximum. We can see from Fig. 4.8 that the coupling strength increases with decreasing gap distance h, which can be correlated with the fact that the modes couple more effectively as the gap size is reduced. Note that in Fig. 4.5(a), an uncharacteristic bump in modal area and a corresponding dip in propagation length [Fig. 4.5(b)] can be observed which could
be attributed to maximum coupling strength between the dielectric cylinder and the h-BN slab modes, causing volumetric loss in h-BN which manifests itself as well confined hyperbolic polaritons (HPs).

Fig. 4.8. The dependence of coupling strength κ on cylinder diameter d and gap height h.

As seen in the dispersion diagram of h-BN from Fig. 4.3, the SPhP mode holds a relatively high effective index and confines the fields tightly, which suggests that as the dispersion curve deviates from the light line, the SPhP mode begins to get more confined on the surface of h-BN slab. This effect can also factor into the hybrid waveguide, where stronger field confinement is achieved at larger wavenumbers.
This is illustrated in Fig. 4.9, where normalized electromagnetic field density is plotted for a fixed gap and cylinder diameter, for three different wavelengths. We clearly see that for the largest wavenumber 1483 cm$^{-1}$, the largest amount of energy is highly confined within the gap between the cylinder and the h-BN slab, while for the shortest wavenumber 1400 cm$^{-1}$, the least amount of energy lies in the gap.
Moreover when the coupling strength is maximum at the three different wavenumbers, as mentioned before, strong field penetration can be observed inside the h-BN slab, giving rise to HPs, which is a sub-diffraction-limit phenomenon observed in h-BN. These HPs follow angular propagation along the y-direction, seen in Fig. 4.10(a), where the angle depends on the ratio of the extraordinary axis (z-axis) and ordinary (x-y plane) components of the anisotropic dielectric function of h-BN, as given by [70].
\[
\theta = \frac{\pi}{2} - \arctan \left(\frac{\sqrt{\varepsilon_x(\omega)}}{i\sqrt{\varepsilon_{xy}(\omega)}} \right)
\]

(4.7)

Figure 4.10(b) shows the dependence of HP propagation angle versus wavenumber, where the solid blue line is computed from Eq. (4.7). The data markers represent the propagation angles at different wavenumbers from the simulation results (\(\theta_1 \) at 1400 cm\(^{-1} \), \(\theta_2 \) at 1426 cm\(^{-1} \) and \(\theta_3 \) at 1483 cm\(^{-1} \)), which are in good agreement with the corresponding computed propagation angles from Eq. (4.7).
Fig. 4.10. (a) Critical angle θ of the hyperbolic polaritons propagating inside the h-BN slab at 1400 cm$^{-1}$ for $[d, h] = [1.4, 0.1]$ μm. (b) Frequency-dependent directional angles of the hyperbolic polaritons, where θ_1 is at 1400 cm$^{-1}$, θ_2 at 1426 cm$^{-1}$ and θ_3 at 1483 cm$^{-1}$.

4.5 Conclusion

We have designed a hybrid surface phonon polariton waveguide using a dielectric Si cylinder placed at a height above a hyperbolic boron nitride slab on a substrate. The resulting hybrid mode can propagate distances of up to more than two orders of magnitude above the operational wavelength, with normalized modal area of $\sim 10^{-3}$ λ^2, which opens the way for various optomechanical applications in mid-IR such as nanoscale tweezers to trap nanoparticles (chemical species that have resonances in
this region) analogous to those seen in the optical regime [82] and near-field optical imaging, waveguiding and focusing applications [49, 41]. Moreover, planar h-BN has proven easy to fabricate and incorporate on a variety of substrates; the air gap can also be substituted with a low loss, low index dielectric spacer which makes for easily realizable fabrications. Our work fulfills the apparent need for phononic waveguiding in integrated polaritonics and next-generation devices operating in the THz spectrum.
Chapter 5

Hybrid long-range hyperbolic phonon polariton waveguide using hexagonal boron nitride for mid-infrared subwavelength confinement

5.1 Introduction

Plasmonics and semiconductor photonic technologies have already revolutionized communications [83, 84] and have potential capabilities in spectroscopy, chemical and biological sensing as well as subwavelength laser devices [85, 86]. Manipulating light on scales much smaller than the wavelength and achieving high-density integration of optical devices remain critical challenges in micro- and nanotechnology. Surface plasmon polaritons (SPPs) are regarded as promising candidates for guiding and confining light at the subwavelength scale at optical and near-infrared (IR) wavelengths [87]. In order to minimize the high optical loss of SPP waveguides, a hybrid plasmonic waveguide, which consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap, has been investigated [1, 57]. For further improvement of the mode confinement and propagation distance, long-range hybrid surface plasmon polariton waveguide structures have been presented [4, 88, 89, 90]. However, due to the intrinsic Ohmic loss of noble metals, the advantages of SPPs are prohibitive at mid-infrared (mid-IR)
wavelengths. An infrared counterpart to the SPP is the surface phonon polariton, which results from the coupling of lattice vibrations (or phonons) of a polar dielectric crystal to incident mid-IR radiation [91]. The mid-IR spectrum is rich with vibrational and rotational molecular resonances which, when coupled to electromagnetic fields, provide informative probes that reveal spectroscopic material characteristics [85]. Phonon polaritons could also provide potential applications for high-density IR data storage [8], infrared phononic nanoantennas [92] and IR imaging [79, 41]. The need for low-loss, subwavelength confinement and propagating modes in mid-IR nanostructures has motivated research into phonon-polariton based waveguiding.

Hyperbolic phonon polaritons (HPhPs) [93] exhibit a hyperbolic dispersion whose permittivity tensor possesses both positive and negative principal components. Owing to their strong confinement and enhancement of electromagnetic fields beyond the diffraction limit scale, HPhPs have gained a lot of attention recently [49, 31, 32, 94]. Of particular interest is hexagonal boron nitride (h-BN), a typical van der Waals (vdW) material that exhibits natural hyperbolic dispersion which compensates the shortcomings of artificial hyperbolic metamaterials, such as high plasmonic losses and complex nanofabrication [31, 32]. Another fascinating property of h-BN is that single-atom thick flakes can be achieved through standard exfoliation techniques [94]. It has been experimentally demonstrated that h-BN nanotubes can
support one-dimensional surface phonon polaritons with deep-subwavelength field confinement in the mid-IR [95].

Recent research has studied insulator-hyperbolic boron nitride-insulator (IHI) structures in the Type II reststrahlen band [19]. The IHI structure has been shown to support long-range propagating polariton modes with propagation lengths higher than a Ag/MgF$_2$ hyperbolic metamaterial waveguide [19]. H-BN has been considered as an alternative to hyperbolic metamaterials due to its naturally occurring hyperbolic dispersion and low loss characteristics in the infrared spectral region [19]. In this paper, we propose a hybrid long-range hyperbolic phonon polariton (LRHPhP) waveguide consisting of two identical dielectric cylindrical wires placed symmetrically about a h-BN slab embedded in a low-permittivity dielectric medium in the Type II reststrahlen band. To the best of the authors’ knowledge, this paper shows for the first time the implementation of recently theoretically-reported [19] long-range HPhP modes in a mid-IR hybrid waveguide using a h-BN slab.

Three-dimensional (3-D) simulations based on finite-element-method (FEM) using Ansys HFSS eigenmode solver are performed to calculate the field distributions. To improve the accuracy of the eigenmode results, sufficiently large dimensions in both the horizontal and vertical directions of $9\lambda_0$ by $6\lambda_0$, respectively, are used. In addition, measured dispersive material properties of h-BN provided by the US Naval Research Laboratory are imported in the model [49]. In [18], Xu et al.
claims to achieve a hybrid waveguide using h-BN resulting from the coupling between type II surface phonon-polaritons in h-BN and a single high index dielectric cylinder. With the use of volumetric LRHPhP in h-BN, the proposed design can achieve three orders of magnitude longer propagation length while maintaining a similar degree of modal confinement as compared with the work by Xu et al. in [18]. This approach allows for ultra-compact and sensitive mid-IR waveguides with applications in sensing, spectroscopy, and lab-on-chip systems [41]. The hybrid waveguide approach utilizes field enhancement [96], which results in the shrinking of the polariton wavelength, from the phonon polaritons to reduce modal area.

This paper is organized as follows: the properties of short and long-range h-BN HPhPs are analyzed and the hybrid LRHPhP waveguide properties are characterized in terms of the guide geometry parameters in section 5.2. In section 5.3, the hybridization analysis through coupled-mode theory is discussed. The conclusions are presented in section 4.

5.2 Geometry and modal properties for the proposed hybrid phononic waveguide

Figure 5.1 illustrates the structures of the hybrid long-range phonon polariton waveguide. Two identical high refractive index dielectric cylinder wires are symmetrically placed on each side of a thin h-BN slab with a small gap distance h. The LRHPhP mode that exists in this structure is a transverse magnetic (TM) mode
that propagates in the z direction. The cylindrical wires with diameter d are gallium arsenide (GaAs) which has a negligible material loss in the window around 6.6μm with refractive index n = 3.5 [1] and the h-BN slab has thickness t = 0.5μm with in-plane permittivity $\epsilon_\perp = -3.38 + 0.19i$ and out-of-plane permittivity $\epsilon_\parallel = 2.77 + 0.0003i$ at mid-infrared wavelength 6.6μm. Using the HFSS eigenmode solver, a thin cross-sectional slice of the geometry under consideration is taken. Master and slave boundaries are placed on the cross-sectional faces to extend the waveguide to infinity. Resulting resonant modes with a given complex eigen frequency are determined for a given phase delay between the master and slave boundaries. The quality factor, Q, of the eigenmode is used to determine the propagation length. Similarly, the phase delay between the master and slave boundaries is used to determine the real part of the complex index. The h-BN based hybrid phononic waveguide embedded in uniform dielectric medium air proposed here can be achieved in suspended waveguide techniques analogous to those seen in [15]. For easily realizable fabrication, the air gap can also be substituted with a low-index and low-loss dielectric spacer similar to that reported in [97] by Oulton et al. The diameter of the dielectric nanotube d, the gap height h and h-BN film thickness t can be controlled with high accuracy [69, 97, 98] which indicates the fabrication tolerance requirements are feasible.
Before conducting hybrid waveguide analysis, we characterized the hyperbolic phonon polaritons that exist in an h-BN thin slab. Both the hybrid long-range and hybrid short-range HPhP refractive indices and propagation lengths are shown in Fig. 5.2. The propagation length of the hybrid phononic mode as a function of the wire diameter d and the air spacer height h is given by $L_m = \left[2\Im(k_{hyb}(d,h))\right]^{-1}$, where $k_{hyb}(d,h)$ is the wavenumber of the hybrid mode [1]. The long- and short-range HPhPs are akin to the respective long- and short-range modes in thin metal slabs that support SPPs [99, 100, 101, 102]. For this thin hyperbolic h-BN slab surrounded by uniform dielectric medium in the Type II reststrahlen band there exists a symmetric
mode and an anti-symmetric mode. The symmetric mode is the so-called long-range hyperbolic phonon-polariton (LRHPnP) mode providing long propagation distance with weak mode confinement and the anti-symmetric mode represents the short-range hyperbolic phonon polariton (SRHPnP) mode which provides shorter propagation distance with stronger mode confinement [19]. The dielectric cylinder wire mode couples with both modes, compensating the weak modal confinement of the pure LRHPnP mode and reducing the pure SRHPnP mode’s modal area. Here the diameter of both cylinders are kept constant at d =1µm. Figure 5.2(a) shows the effective index varying with the thickness of the h-BN slab. As the h-BN slab thickness t increases, tending toward bulk behavior, the short- and long-range phonon polariton modes start to converge. Different colors of the effective index curve represent different spacer heights h in each waveguide. The dashed curves with increasing effective index as t decreases represent the SRHPnPs and solid curves represent LRHPnPs in Fig. 5.2(a). Figure 5.2(b) shows the propagation lengths for this waveguide for h-BN slab thickness less than 3µm. The LRHPnP modes in each case of the waveguide consistently has several orders of magnitude longer propagation length than that of SRHPnP modes. Therefore, the symmetric mode is of interest in this study since it supports much longer propagation lengths.
Fig. 5.2. (a) The effective indices as a function of h-BN slab thickness t for hybrid and non-hybrid LRHPnP and SRHPnP waveguides. (b) The propagation distance for hybrid and non-hybrid LRHPnP and SRHPnP changing with t. The solid lines and broken lines represent long- and short-range HPhPs, respectively. The colored curves (red and green) represent...
hybrid waveguides for different spacer heights h. The black lines represent a h-BN thin slab embedded in low dielectric material exhibiting long and short range HPhPs.

In the following study, we choose h-BN slab thickness $t = 0.5 \mu m$ and we vary the cylinder wire diameter d and the dielectric spacer height h between the cylinder and the h-BN slab to manipulate the propagation distance L_m and modal area A_m while maintaining the electromagnetic field distribution of a single hybrid mode at wavelength $6.6 \mu m$. The modal area, A_m, is defined as the ratio of the total mode energy to the peak energy [1],

$$A_m = \frac{W_m}{\max\{W(r)\}} = \frac{1}{\max\{W(r)\}} \iint_{-\infty}^{\infty} W(r) d^2r$$ \hspace{1cm} (5.1)

where W_m is the electromagnetic energy $W(r)$ and is the energy density (per unit length along the direction of propagation) given by,

$$W(r) = \frac{1}{2} \text{Re} \left\{ \frac{d(\omega \epsilon(\bar{r}))}{d\omega} \right\} |E(\bar{r})|^2 + \frac{1}{2} \mu_0 |H(\bar{r})|^2$$ \hspace{1cm} (5.2)

The normalized mode area is defined as A_m/A_0 to characterize the mode confinement, where $A_0 = \lambda_0^2/4$ is the diffraction-limited area in free space.
Fig. 5.3. (a) Normalized modal area \(\frac{A_m}{A_0} \) versus cylinder wire diameter \(d \) for different spacer height \(h \) (colored lines), compared with a pure cylinder mode (black line). (b) Hybrid propagation distance versus cylinder wire
diameter \(d \) for different spacer height \(h \) (colored lines), compared with LRHPhP modes in Air-hBN-Air is denoted by the black dashed line.

Fig. 5.4. Electromagnetic energy density distribution for (a) \([d,h] = [2.5, 0.25] \text{\(\mu \)m}, (b) \([d,h] = [1, 0.25] \text{\(\mu \)m}, (c) \([d,h] = [1, 0.01] \text{\(\mu \)m and (d) \([d,h] = [1.5, 0.01] \text{\(\mu \)m. The lower right-hand corner shows the magnetic field vectors for the hybrid LRHPhP waveguides.}

Figures 5.3(a) and (b) show the normalized mode area and propagation distance, respectively, as a function of \(d \) and for various values of \(h \). For a large cylinder wire diameter \(d \) and spacer height \(h \) (\(d > 1 \text{\(\mu \)m, } h \geq 0.25\text{\(\mu \)m), the hybrid LRHPhP waveguide supports a low-loss cylinder-like mode in which the electromagnetic
energy is confined into the two high-permittivity cylinder wires [Fig. 5.4(a)]. Conversely, a small cylinder diameter ($d < 1\mu m$) leads to a single LRHPhP-like mode with very weak localization on both sides of h-BN/air interface and sustaining loss comparable to that of uncoupled LRHPhPs. At a specific value of $d = 1\mu m$, both the uncoupled mode indexes are equal to each other. As a result, the mode area is at its smallest as can been seen in Fig. 5.3(a). In addition, at $d = 1\mu m$, the mode character possesses equal contribution of both dielectric-cylinder mode and LRHPhP mode characteristics [Fig. 5.4(b)]. When $h = 0.25\mu m$ and $d = 1\mu m$, the propagation distance is $2.46mm \approx 370\lambda_0$, while confining the energy within the spacers between the dielectric cylinders and h-BN slab to a modal area of approximately $10^{-1}\lambda_0^2$. If the spacer height h is reduced to nanometer scale, the electromagnetic field is strongly confined in the nanometer air gap between the cylinder and the h-BN interface [Figs. 5.4(c) and 5.4(d)]. The minimum modal area can be achieved at cylinder diameter $d = 1\mu m$ for different spacer heights h but at the cost of the shortest propagation distance [Figs. 5.3(a) and 5.3(b)]. For the case of $d = 1\mu m$ and $h = 0.01\mu m$, the field has the highest confinement in the nanometer gap region with a modal area of approximately $10^{-2}\lambda_0^2$ while still maintaining a relatively long propagation distance that is 7 times longer than the free-space wavelength. This explicitly shows the known trade-off between modal area and propagation distance.
Fig. 5.5. Normalized energy density along $x = 0$ [dashed line in inset in (a)] for $h = 0.01\mu$m (a), 0.05μm (b), 0.1μm (c), 0.25μm (d) shows the confinement in the air spacer. The shaded grey and blue areas represent the two dielectric wires and h-BN slab regions, respectively. The energy density along $y = (t/2) + h$ [dashed line inset in (e)] for $h = 0.01\mu$m (e), 0.05μm (f), 0.1μm (g), 0.25μm (h).
Normalized energy densities along x=0 and y = (t/2) + h at d = 1μm for different spacer heights, h, are plotted in Fig. 5.5. This confirms that the stored electromagnetic energy is confined in the low-permittivity dielectric medium (here air) between the cylinder wire and the h-BN slab since the continuity of the displacement field at the material interfaces gives a strong normal electric-field component in the gap [1]. As h increases the electromagnetic energy in the gap region decreases, since the hybrid waveguide behaves as an effective optical capacitance.

5.3 Coupling characteristics between long-range phonon polaritons and dielectric waveguide

For the purpose of gaining a deeper understanding, we analyzed the dependence of the hybrid LRHPhP mode’s effective index, $n_{hyb}(d,h)$ on cylinder wire diameter and air spacer height. Figure 5.6 shows the variation in d of hybrid mode effective index for different air spacer heights h. In the limit of large d, the effective index approaches that of the pure dielectric cylinder wire mode, $n_{wire}(d)$, whereas for small d it converges to the pure LRHPhP mode, n_{LRHPhP}, in agreement with the electromagnetic energy density analysis in section 5.2. At the same time, the hybrid LRHPhP mode’s effective index is always larger than the index of both the pure dielectric cylinder wire mode and the pure LRHPhP mode, indicating that the dielectric cylinder wire waveguide mode is coupling with LRHPhP mode. The mode’s effective index can be increased by increasing the diameter of the cylinder
wire, d, for a fixed spacer height, h, or by reducing the spacer height for a fixed d. This is because, as d increases or h reduces, the dielectric cylinder wire mode more effectively couples with the LRHPhP mode.

![Graph showing effective index of hybrid LRHPhP waveguide](image)

Fig. 5.6. Effective index of the hybrid LRHPhP waveguide for a range of spacer height h versus cylinder wire diameters d, n_{hyb} (colored lines). For comparison, the effective indices of pure cylinder wire, n_{wire} (black solid line), and pure LRHPhP, n_{LRHPhP} (black dashed line) are plotted.

In order to explain the hybrid LRHPhP mode characteristics, coupled-mode theory is applied in which the hybrid mode is described as a superposition of the cylinder wire waveguide mode (without h-BN slab) and the LRHPhP mode (without cylinder wires) [1]. The hybrid mode can be expressed as
\[
\psi_{\pm}(d, h) = a_{\pm}(d, h)\psi_{\text{wire}}(d) + b_{\pm}(d, h)\psi_{\text{LRHPhP}}
\] (5.3)

where \(a_{\pm}(d, h)\) and \(b_{\pm}(d, h) = \sqrt{1 - |a_{+}(d, h)|^2}\) are mode amplitudes of the cylindrical wire modes \(\psi_{\text{wire}}(d)\) and LRHPhP mode \(\psi_{\text{LRHPhP}}\). The square norm of the cylindrical wire mode amplitude, \(|a_{+}(d, h)|^2\), is also known as the mode character and describes the degree to which the guided mode is cylinder-like or LRHPhP-like. It can be expressed in terms of the uncoupled mode indexes as follows,

\[
|a_{+}(d, h)|^2 = \frac{n_{\text{hyb}}(d, h) - n_{\text{LRHPhP}}}{(n_{\text{hyb}}(d, h) - n_{\text{wire}}(d)) + (n_{\text{hyb}}(d, h) - n_{\text{LRHPhP}})}
\] (5.4)

Figure 5.7(a) shows that when \(|a_{+}(d, h)|^2 > 0.5\), the mode is cylinder-like and LRHPhP-like otherwise. At the critical coupling diameter, \(d_c\), the cylinder mode amplitude \(|a_{+}(d, h)|^2 = 0.5\), which means the cylinder and LRHPhP characteristics contribute equally towards the hybrid mode. In other words, the cylinder mode and LRHPhP mode propagate in phase and maximize the effective optical capacitance of the hybrid waveguide. As the cylinder wire diameter \(d\) increases, for each different value of \(h\), the cylinder mode character increases which is consistent with Fig. 5.4(a), large \(h\) and \(d\) leads to a cylinder-like mode. At moderate values of \(h\) and \(d\), the hybrid waveguide features both cylinder mode and LRHPhP-like mode [Fig. 5.4(b)].

According to the coupled-mode theory, for the hybrid LRHPhP waveguide, the coupling strength \(\kappa(d, h)\) between the dielectric cylinder mode and LRHPhP mode can be computed as [89]:
\[\kappa(d,h) = \sqrt{(n_{hyb}(d,h) - n_{LRHP})(n_{hyb}(d,h) - n_{wire}(d))} \]

(5.5)

Based on the tenets of coupled-mode theory, the hybrid mode is considered to be a superposition of the two uncoupled cylinder-wire and LRHP modes. The field enhancement in the spacer regions is a result of the field distribution overlay from these uncoupled modes that comprise the hybrid mode. As such, high energy confinement characterized by the reduction of the mode area and increase in field enhancement in the spacer regions corresponds to the maximum phase/index matching condition of the two uncoupled modes and thus the location of the maximum coupling strength as seen in Figs. 5.3(a), 5.6, and 5.7(b). Therefore, when the energy concentration or field enhancement in the gap between the cylinders and the h-BN slab is proportional to the coupling strength.
Fig. 5.7. (a) The cylinder mode character $|a_4(d,h)|^2$ depends on wire diameter d from Eq. (5.3) for different spacer height h. (b) The dependence
of coupling strength κ on cylinder wire diameter d and spacer height h from Eq. (5.4).

The dependence of coupling strength κ on cylinder wire diameter d and spacer height h are plotted in Fig. 5.7(b). It is shown that the coupling strength increases with decreasing spacer height h, which conveys the fact that the two modes couple more effectively as h reduces. Also the maximum coupling strength occurs at $d \approx 1.25\mu m$ which is slightly shifted from $d_c \approx 1\mu m$. From Eq. (5.5), if $n_{hyb}(d,h)$ did not change with the cylinder diameter d for a fixed spacer height h, the dielectric cylinder mode and LRHPhP mode satisfy the phase-matched condition and $n_{LRHPhP} = n_{wire}$ gives the maximum values of the coupling strength at $d \approx 1\mu m$. In fact, both n_{hyb} and n_{wire} are changing with d which causes the shifting of the coupling strength. The coupling strength between the dielectric cylinder mode and the LRHPhP mode determines the optical energy concentration in the gap region. The field enhancement in the gap regions allows for efficient trapping of nanoscale particles.

5.4 Conclusion

We have proposed a hybrid long-range phononic waveguide consisting of two identical dielectric cylinder wires symmetrically placed on each side of a h-BN slab at mid-IR wavelength: 6.6μm. The hybrid short-range and long-range h-BN based hyperbolic phonon polariton modes are shown to exist, however the hybrid LRHPhP
mode provides propagation lengths that are significantly longer when compared with the hybrid SRHPhP mode while achieving comparable modal areas. The strong coupling between the LRHPhP mode and the dielectric cylinder wire waveguide mode results in a hybrid mode that can propagate distances up to $370\lambda_0$ and maintain sub-wavelength modal area within the spacers between the dielectric cylinder wires and h-BN slab of approximately $10^{-1}\lambda_0^2$. The relationship between the parameters d and h for the physical geometry of the hybrid structure and the propagation length and mode area are characterized. A hybrid mode with a mode character at 50%, where the two uncoupled modes are index matched, results in a hybrid mode with the most confined hybrid mode, however, the hybrid mode suffers from a reduction in the propagation length. Hybrid modes with mode character equal to 50% are useful for applications where physical device footprint is the fundamental limiting requirement or when high field enhancement is needed for applications like sensing or particle trapping in nano-capacitive spacer region between the high index dielectric waveguide and h-BN. Given the numerous examples of molecular fingerprints in the mid- to long-wave IR spectrum, hybrid waveguide designs for enhancing and sensing such molecules have great potential for impact in lab-on-chip technologies. The region where the hybrid waveguide’s mode character is above 50% is used to achieve sub-diffractional long-haul energy transport for integrated polaritonic devices like interferometers in the mid-IR spectrum wherein mode area
is traded off for longer propagation length stemming from the high index waveguide attributes.
Chapter 6

Conclusions

In this dissertation, the different physical phenomena associated with surface electromagnetic modes coupled to dielectric waveguides in mid-IR have been studied. For such purpose, the finite element method has been used to develop accurate numerical models to calculate the electromagnetic fields bound to the waveguides. Due to the intrinsic Ohmic loss of noble metals, the advantage of surface plasmon polaritons are prohibitive at mid-infrared wavelengths. The goal of this research is using polar dielectrics in order to leverage the phonon polaritons in mid-IR to overcome this loss.

Chapter 3 of this dissertation concentrated on a new structure of a hybrid waveguide by using SiC as a polar material alternative to metal for mid-IR applications. This design achieves phonon coupling by placing a Si rectangular dielectric waveguide on a low dielectric permittivity material (BCB) with a SiC wafer substrate. This hybrid waveguide design realizes the subwavelength confinement in the BCB spacer. For free-space wavelength $\lambda_0 = 12.002\mu\text{m}$, the best performance of field distribution and propagation distance up to $18.55\lambda_0$ can be achieved.
Chapter 4 has focused on the characteristics of phononic waveguide by using hyperbolic boron nitride. Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. Artificially fabricated metamaterials could provide hyperbolic responses, however, they suffer from high plasmonic losses and require complex nanofabrication, which results size-dependent limitations on optical confinement. Hexagonal boron nitride naturally possesses hyperbolic responses. This novel structure contains a dielectric Si wire above boron nitride slab, by changing the dielectric gap between the wire and slab, the mode coupling has been characterized. The strong coupling between the dielectric mode from the cylinder waveguide and phonon polaritons from h-BN slab enhances the confined field up to $10^{-3}\lambda_0^2$ and enables propagation distance up to $100\lambda_0$.

Chapter 5 has the goal of further improving the propagation length while maintaining the same degree of mode confinement compared to previous design in Chapter 4. The numerical results for both long- and short-range phononic volumetric polariton modes in a slab of h-BN has been shown in this chapter. A hybrid LRHP PhP waveguide consisting of two identical dielectric cylindrical wires placed symmetrically about a h-BN slab embedded in a low-permittivity dielectric medium in the Type II restrahlen band is proposed. Compared with our previous work, this new design is capable of achieving more than two orders of magnitude larger propagation length while maintaining the same degree of mode confinement.
LRHPH waveguides constitute a new class of components that can provide guiding of light as well as coupling and splitting from/into a number of channels with reasonable insertion loss and good waveguide performance. All described features of the hybrid LRHPH technology may eventually lead to numerous applications of hybrid LRHPHs in different fields ranging from integrated circuits to subwavelength laser and biological sensing.

Fabrication and optimization of hybrid waveguide components, ranging from straight waveguides to couplers, as well as coupling the light source to hybrid phononic waveguide is an ambitious task, and hopefully, this dissertation can be used as basis for the future hybrid phononic related research.
References

Appendix

Hybrid LRHPHP h-BN waveguide model setting in HFSS

1. Set solution type:
 HFSS → Solution Type → Eigenmode → OK

2. Set model unit:
 Modeler → Unites → Select um → OK
3. Set h-BN material:

Open material tool bar → Select → Add material

Material set up for h-BN in Type II reststrahlen band at 45.45 THz
Same process to set up two GaAs cylinder dielectric waveguides material

![Material properties window](image)

4. Define variables

HFSS → Design Properties → Add \(d = 1 \mu m \), \(h = 10 \text{nm} \), \(t = 0.5 \mu m \), \(L = 10 \text{nm} \), \(XL = 40 \mu m \), \(YL = 16 \mu m \), \(T1 = 16 \mu m \), \(BL = 0.0124715 \text{rad} \), \(Per = 1.71653388 \) as local variables; \(d, h, t, L, XL, YL, T1, BL \) and \(Per \) represent the cylinder diameter, air gap height, h-BN slab thickness, master and slave boundary separation, air-box width, upper air-box height, lower air-box height, Phase delay between master and slave boundary and relative permittivity.
5. Draw a box

Draw → Box

6. Specify the dimensions and position with variables for upper air box
7. Change the attributes

Double click on Box1 for the attribute menu, change the name to Air1, the material to air, color to purple, and set the transparency to 0.94.

8. Fit the view in the 3D modeler window

CTRL + D, Shift + Mouse left and Alt + Mouse left

9. Draw h-BN slab and change the attributes

Draw → Box
Double click on **Box1** for the attribute menu, change the name to **h_BN**, the material to **h_BN_45.45THz**, color to **light blue**, and set the transparency to 0.6.

10. Draw the bottom air-box and specify the dimensions and position with variables
11. Change the attributes

Double click on **Box1** for the attribute menu, change the name to **Air2**, the material to air, color to **purple**, and set the transparency to 0.94.

12. Draw the upper cylinder

Draw → Cylinder

Enter the position and the dimensions of the created cylinder as shown in the figure below.
13. Change the attributes

Double click on **Cylinder 1** for its attribute menu and change the name to GaAs1 and material to GaAs

14. Subtract the GaAs1 from Air1

Mouse left click Air1 → CTRL + mouse left click GaAs1 → Modeler → Boolean → Subtract
15. Draw the bottom cylinder

Draw → Cylinder

Enter the position and the dimensions of the created cylinder as shown in the figure below.

16. Change the attributes

Double click on Cylinder 1 for its attribute menu and change the name to GaAs2 and material to GaAs
17. Subtract the GaAs2 from Air2

Mouse left click Air2 → CTRL + mouse left click GaAs2 → Modeler → Boolean → Subtract

3D-view of the h-BN hybrid LRHPHP waveguide
18. Set up master and slave boundary

Draw → Rectangle

Enter the position and the dimensions of the created rectangle as shown in the figure below.

19. Change the attributes

Double click on **Rectangle1** for its attribute menu and change the name to Master and set the transparency to 1.
20. Set up the master boundary condition

Mouse right click Master → Assign Boundary → Mater → New Vector

21. Set up master boundary vector position

Put the mouse at the left bottom corner of the bottom air-box and click
Move the mouse to the right corner of the bottom air-box and click

Click the **Reverse Direction** → OK
22. Set up the slave boundary

Draw → Rectangle

Enter the position and the dimensions of the created rectangle as shown in the figure below.

23. Change the attributes

Double click on **Rectangle2** for its attribute menu and change the name to Slave and set the transparency to 1.
24. Set up the slave boundary condition

Mouse right click Slave → Assign Boundary → Slave

25. Set up the slave boundary vector direction

The master and slave boundary vector direction must be in same direction but opposite face as shown in the figure below
26. Set up phase delay between master and slave boundary condition

27. Create an Analysis

HFSS → Analysis Setup → Add Solution Setup → General tab

Solution Frequency: 45.4 THz

Number of Modes: 3

Maximum Number of Passes: 20

Maximum Delta S: 0.01
28. Validation Check and Analyze All

HFSS → Validation Check

Click Close if all pass

HFSS → Analyze All

Use Message Manager to view any warning or error message

30. Check the simulation result

Mouse left click Solution Data
31. Check the field distribution

Edit → Select → Faces; Edit → Select → By Name → Master → Face278 → OK

Mouse right click Field Overlays → Plot Fields → E → ComplexMag_E
Same process for plotting H Field

32. Calculate the normalized modal area

HFSS → Fields → Calculator
33. Calculate the propagation distance

The eigenmode solver of HFSS gives us the eigenvalue which is the frequency. The master and slave boundary conditions give the infinite length of the waveguide in the z direction, in our case z is the propagation direction. When we set up the master and slave boundary condition, there is a parameter named phase delay (BL) that needs to be determined. The effective index is related to the phase delay. First, we define the phase delay in this form,

$$\beta = BL/d$$ \hspace{1cm} (A-1)
where β is propagation constant in the unit of rad/m, BL is the phase delay of the master and slave boundary in the unit of rad, d is the separation distance between master and slave boundary in the unit of nanometer (here is 10nm).

The effective index is related to β.

$$n_{\text{eff}} = \beta \cdot \lambda_0 / 2\pi$$ \hspace{1cm} (A-2)

The propagation distance is related to the Q factor which comes from the eigenmode solver in HFSS. Q is the quality factor of the waveguide. The propagation length (PL) is in a form,

$$PL = 1/(2\alpha)$$ \hspace{1cm} (A-3)

where α is the attenuation constant and,

$$\alpha = \beta / 2Q$$ \hspace{1cm} (A-4)

34. Plot the normalized electromagnetic energy density

Draw \rightarrow Line (arbitrary position) \rightarrow Mouse double left click CreateLine \rightarrow Type the points positions as shown in the figure below
Mouse right click Results → Create Fields Report → Rectangular Plot