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Coupled-mode theory has been applied to various fields of endeavor from 

waveguide splitters/combiners and molecular sensing to light-matter interactions. 

Metamaterials, engineered periodic or aperiodic structures, are employed to sense 

molecular vibrational fingerprints in the mid to long infrared wavelengths. A 

metasurface, a 2D metamaterial, can be designed such that it has a resonance at a 

molecular vibrational frequency. Mode splitting results from the coupling of two 

electromagnetic field distributions, or modes, spatially and/or temporally. 

Metamaterial and molecular resonance coupling is a result of near field interaction. 

Fano resonances have an asymmetric line-shape that results from the coupling of a 

continuum and a discrete state in a quantum description or a bright and dark mode 

in a classical description. Analogous to the atomic system, a bright mode exhibits a 

broad resonance or short lifetime that couples strongly with incident far field 

radiation while, on the other hand, a dark mode provides a sharp quality factor, Q, 
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resonance or a long lifetime that couples weakly with an excitation far field.   

Polaritons are quasiparticles that result from strong coupling of light and matter. 

Surface plasmon polaritons (SPPs) result from the coupling between plasmons, or 

free electrons in a noble metal, and electromagnetic waves. The SPP mode exists as 

a tightly bound transverse magnetic (TM) surface mode on a metal/dielectric 

interface. However, SPPs only exist in a spectrum from the ultraviolet to the near 

infrared (IR) for a noble metal. For polariton applications in the mid to long 

infrared range phonon polaritons are required. Surface phonon polaritons (SPhPs), 

similar to SPPs, are a surface TM mode on a polar dielectric/dielectric interface. 

However, SPhPs only exist in a spectral region known as the reststrahlen band 

where the polar dielectric acts like a metal, i.e., negative real permittivity.  

Hexagonal boron nitride (hBN) is a van der Waals crystal with naturally occurring 

hyperbolic dispersion hat has been shown to support phonon polaritons in two 

distinct reststrahlen bands. The upper reststrahlen band, ranging from 1630cm
-1
 

(6.135 ɛm) to 1360 cm
-1 
(7.353 ɛm), provides highly volume-confined phonon 

polaritons. The lower reststrahlen band, ranging from 825 cm
-1

 (12.12 ɛm) to 760 

cm
-1 
(13.16 ɛm), exhibits a negative index (or negative dispersion) and provides 

ultra-slow sub-diffraction volume-confined phonon polaritons. The subdiffraction 

confinement and ultra-slow nature of the type I hyperbolic phonon polaritons 

(HPhPs) are desirable properties for mid to long IR wavelength sensing. 
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In this dissertation, a carbonyl oxide bond vibrational resonance in poly(methyl 

methacrylate) (PMMA) will be used as an analyte. A wide-field-of-view perfectly 

absorbing metamaterial (PAMM) is then designed such that the metamaterial 

resonance couples to a molecular vibrational resonance in the analyte. Tuning the 

relationship between internal (absorption) and external (scattering) damping or loss 

in the PAMM results in both electromagnetically induced transparency (EIT) and 

electromagnetically induced absorption (EIA) response in the PAMM-analyte 

coupled system. Next, Fano resonance metamaterials (FRMM) coupled to the 

PMMA molecular resonance are investigated. FRMMôs asymmetric reflection 

spectrum is a result of hybridization of symmetric (bright) and asymmetric (dark) 

plasmon modes supported by the metamaterialôs geometry. The addition of the 

analyte results in multi-mode coupling between the FRMMôs modes and molecular 

resonance. Multi -mode coupling via a FRMM has advantages in selectivity and 

sensitivity by the tailoring of the metamaterial resonance prior to the introduction 

of the molecular resonance.  

In addition to metamaterial-based sensing, different hybrid phononic waveguide 

geometries are investigated in this dissertation. The first geometry considered is a 

4H-SiC (silicon carbide) substrate with a GaN spacer material and GaAs tracer. 

The results presented in this dissertation using a 4H-SiC substrate are the first 

practical analysis of a hybrid phononic waveguide in the mid to long IR. The 4H-

SiC enhanced hybrid waveguide geometry is then used to create two fundamental 
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optical waveguiding devices: an optical directional coupler (ODC) and a Mach-

Zehnder interferometer (MZI) . The phonon polariton enhanced ODC and MZI in 

the mid to long IR presented in this dissertation are both original contributions. 

Hyperbolic phonon polariton enhance waveguides using hBN in the mid to long IR 

of similar confident of approximately 5x10
-2

(ɚ0/2)
2
 have been shown to provide 

propagation lengths of 58 ɚ0 and 20 ɚ0 for type I and II HPhP enhanced 

waveguiding respectively. Unique and novel coupling between ultraslow negatively 

dispersive type I HPhP modes and positive dispersive high index waveguide modes 

are analyzed. The coupling between the type I HPhP modes and high index 

waveguide modes result in upper hybrid modes with forward and backward 

propagating modes that inherited the type I HPhPôs slow waves with group 

velocities ranging from 0.065c to 0.03c.  
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Chapter 1:  Introduction  

1.1 Motivation  

The field of nanophotonics, the study of light interaction with nanoscale objects 

and control on the nanometer scale [1], has an array of applications including, but 

not limited to optical communication[2,3] and spectroscopy [4]. Two mechanisms 

for achieving the nanoscale control of light include using a metamaterial (formed 

from periodic or aperiodic building block elements known as meta-atoms [5,6]) or 

using metal optics [7]. Applications for metamaterials include cloaking, optical 

filters, optical antennas, lenses, photovoltaics, and sensors [8-14]. The contribution 

of each meta-atom results in exotic bulk material properties that are not found in 

nature that can be engineered or tailored. A metasurface is a special case of a 

metamaterial where the meta-atoms are arranged in a sheet or planar surface [6,15]. 

Metasurfaces are appealing to fabricate in comparison to a volumetric metamaterial 

when using conventional CMOS fabrication and thin-film techniques. 

Metamaterials and/or metasurfaces have been used in different forms of biological, 

molecular, and material sensing. In infrared (IR) spectroscopy, interaction between 

IR radiation and matter is used in the detection of biological markers or fingerprints 

in matter like DNA, proteins, and molecular vibrations. The introduction of a 

metallic surface can enhance the resonance signature of a molecule[10,16,17] as in 
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the case of surface enhanced Raman spectroscopy (SERS)[18-24] or surface 

enhanced IR spectroscopy (SEIRS) [11,25-28]. It has been reported that typical 

field enhancements of IR based nanoantenna for spectroscopy applications range 

from 1 to 4 orders of magnitude [29-32].         

Metal optics allows for the nano-scale confinement of light, which has an appealing 

application in photonic integrated circuits (PIC) [33,34]. The perpetual need for 

minimization and reduction in SWAP (size, weight and power) has motivated the 

need for ultra-confined optical interconnects that can support several Gbps (gigabits 

per second) data links on silicon chips [2,35]. Surface plasmon polaritons (SPPs), 

quasiparticles that result from light-matter coupling, are tightly bound surface 

waves on metal-dielectric interfaces which lends SPPs to nano-scale confinement 

applications [7]. However for mid- to long-wave infrared application, SPPs in 

noble metals are no longer supported [4]. Therefore, other plasmonic materials or 

dielectric materials are required in place of SPP supporting noble metals. In the 

case of the latter, polar dielectrics with polar optical phonon interaction in the mid- 

to long-wave IR can support phonon polaritons in a band of frequencies between 

longitudinal (LO) and transverse optical (TO) phonon frequencies called the 

ñreststrahlenò band [4]. In the reststrahlen band the relative permittivity of the polar 

dielectric is negative, and can be described with a Lorentz oscillator model [4]. The 

mid- to long-wave IR spectral region has applications in free space optics/remote 

sensing due to the atmospheric transmission window between 8 ɛm to 12 ɛm,  and 
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in spectroscopy with the wealth of molecular fingerprints in that spectral region 

[4,30,36]. 

1.2 Method 

1.2.1:  ANSYS High Frequency Structural Simulator (HFSS) 

ANSYS high frequency structural simulator (HFSS) is a commercially available 

full -wave finite element method (FEM) solver that is used to solve Maxwellôs 

equations [37,38]. The basic four steps in an FEM analysis are as follows [39]: 

1. Divide the problem space in discrete elements. Discretization of the 

geometry is also known as meshing. An example of typical meshing 

elements used in HFSS is shown in Figure 1.    

2.  Determine the equations for the meshing elements.   

3. Assemble the elements to be solved. 

4. Use the system of equations determined to solve for the field at the given 

nodal points using the appropriate boundary conditions.     

 

Figure 1. Four-node tetrahedron, node numbers labeled, by default is used as the 

meshing element in ANSYS HFSS. 

1

2
3

4
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In discretization of the geometry, HFSS has an automatic adaptive meshing process 

which starts with an initial mesh that is then iteratively refined in places with high 

field gradient [37,38]. The adaptive meshing process continues until a convergence 

criteria, S-parameters for driven model and resonant frequency delta for eigen 

mode, is met or the number of adaptive passes are met [37,38]. Also, HFSS 

provides ñmesh operationsò in which the user dictates the meshing element sizes 

directly, as opposed to the automatic adaptive meshing [37,38]. In general, FEM is 

more versatile, given its ability to solve in inhomogeneous media and irregular 

shaped structures [39]. Second, the system of equations that govern the meshing 

elements are determined. A relationship between the nodal field values and each 

meshing element is determined. Next, each element in the solution region is 

assembled, and a matrix relating the nodal fields to each other is obtained. Lastly, 

the assembled matrix is solved using boundary conditions to determine the nodal 

fields of the meshing elements. In HFSS, the resulting solution is checked against 

the convergence criteria inputted by the users. If the convergence criteria are not 

met then HFSS would refine the mesh and resolve for the nodal solutions.  

Figure 2 shows the use of periodic boundaries in the setup of a metamaterial and 

waveguide structure in driven model in HFSS. The driven solution uses ports or 

incident field to excite the simulated structure which is used for determining S-

parameters and field solutions. The slave boundary is linked to a master boundary 
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and a phase delay defining the phase shift between the boundaries. The 

master/slave ports shown in Figure 2.a define an infinite array in two directions. 

The Floquet port[40] is used to excite a plane wave of an infinite array where the 

phase delay in the slave port can be used to define the incidence angle of the 

excitation. The waveguide cross-section, shown in Figure 2.b with the master/slave 

boundaries, is used in an eigen model to define an infinite waveguide in the 

propagation direction. The eigenmode solution in HFSS is used to determine 

natural resonances of the structure, field solutions, and quality factor of the 

resonance. The phase delay in the slave port is used to calculate the propagation 

phase constant: 

ὴ= ὲeffὯ0ὰ (1.1) 

where p is the phase delay defined in the slave boundary, l is the thickness of the 

waveguide cross-section, k0 is the free space phase constant, and neff is the effective 

index of the waveguide. For a given phase delay a complex resonance frequency is 

calculated using the eigenmode solver.   
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Figure 2. a) Metamaterial unit cell with master/slave periodic boundaries, and b) 

waveguide cross-section using master/slave periodic boundaries are shown. 

 

1.3 Dissertation Contribution  

Mode coupling gives rise to normal mode splitting[26-28,41-45] as can be seen in 

Figure 3. In mode coupling two uncoupled modes (cyan and red dashed lines in 

Figure 3) interact with a coupling strength ɋ. The result is mode repulsion that 

forms hybrid modes (solid blue and black lines in Figure 3). In both metamaterial-

molecular coupling and phonon-enhanced hybrid waveguiding, mode coupling is 

involved. In the following section resonant coupling between a PAMM[13,26,46-

50] or FRMM[51-57] and molecular vibrational resonances will be discussed. 

Next, phonon-enhanced hybrid waveguiding and optical devices will be discussed 

[3,35]. Here, a practical surface phonon polariton (SPhP) enhanced waveguide 

architecture using 4H-SiC substrate in the mid to long IR is analyzed. Then, an 

optical directional coupler and Mach-Zehnder interferometer using the SPhP hybrid 
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waveguide is numerically analyzed [61,62]. Lastly, a hybrid waveguide geometry is 

explored with hyperbolic phonon polaritons (HPhPs) from hexagonal boron nitride 

(hBN).  

 

 

Figure 3. An example of an anti-crossing dispersion diagram that describes level 

repulsion. 

 

The contributions in this dissertation are as follows: 

¶ A wide-field-of-view PAMM coupled to a molecular resonance is 

investigated to show mode coupling between the two resonances via the 

unique mode splitting signature. Temporal coupled mode theory was used 
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in analyzing the resulting coupling. Both reflective spectral signatures of 

electromagnetic induced transparency (EIT) and electromagnetic induced 

absorption (EIA) are shown to be related to the internal (absorption) and 

external (scattering) loss of the PAMM. 

¶ Nanorod/nanoslot metamaterials with Fano asymmetric 

transmission/reflection spectra are numerically analyzed and shown to be 

the result of bright-dark mode coupling. Then an analyte, PMMA, with a 

molecular resonance at 52 THz is introduced and multimode coupling is 

observed. The resulting coupling, like in the case of the PAMM, provides a 

unique mode splitting signature, but unlike the PAMM the FRMM IR 

resonance that couples to the molecular resonance is the dark mode of the 

FRMM that has a higher Q factor resonance. This higher Q factor resonance 

allows for selectivity advantages as couple to the PAMM.    

¶ The first practical mid- to long-wave IR hybrid waveguide enhanced by 

phonons in a polar dielectric 4H-SiC, silicon carbide, is numerically 

analyzed. It is shown that propagation length along the waveguide on the 

order of 7ɚ0 with confinement factors of less than 5x10
-2
(ɚ0/2)

2 
are 

achievable where ɚ0 = 12.2 ɛm. The results presented show a hybrid mode 

area in the mid- to long-wave IR that is more confined than the free space 

diffraction limited area and the high index dielectric waveguide mode area 
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while maintaining a propagation distance that is several times bigger than 

the wavelength.  

¶ Both an optical directional coupler (ODC) and Mach-Zehnder 

interferometer (MZI) were made using the 4H-SiC enhanced hybrid 

waveguide and are numerically analyzed. It is shown that the output port 

powers conform to coupled-mode theory as described in conventional 

dielectric waveguides. Thus, using the hybrid surface phonon polariton 

waveguide, fundamentally integral devices such as the ODC and the MZI 

were designed, which paves the way for future devices like modulators, 

optical filters and waveguide based sensors. 

¶ Hexagonal boron nitride (hBN) has two reststrahlen bands: an upper (type 

II) and lower (type I). Both reststrahlen bands of the hBN, for the first time, 

are employed in hybrid waveguiding configurations and are compared. 

Type II HPhP hybrid waveguides are shown to maintain propagation 

lengths along the waveguide of 20ɚ0 with confinements of less than 5x10
-

2
(ɚ0/2)

2 
achievable where ɚ0 = 6.6 ɛm. The type I HPhPs enhanced hybrid 

waveguide retains the ultra-slow group velocity property of the type I 

HPhPs while maintaining propagation length of 15ɚ0 with confinement 

factors of less than 2.25x10
-2

(ɚ0/2)
2
 at ɚ0 = 13 ɛm.  
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Chapter 2:  Perfect Absorbing Metamaterial 

2.1 Introduction  

PAMM, as the name implies, is a metamaterial that can be designed such that, in an 

ideal scenario, there is a frequency where there is 100% absorption of the incident 

radiation. In the case of a wide-field-of-view PAMM which is considered, the 

absorption of the incident radiation is independent of angle of incidence [48]. The 

resulting perfect absorption has been described as having an impedance match 

between free space and a resonant metamaterial in a transmission and nanocircuit 

model [13,49]. For a PAMM with a ground plane, there is not a fully defined S-

matrix [48]. Therefore, the perfect absorption phenomenon is better described in 

terms of critical coupling where Ohmic (absorption) and radiative (scattering) 

losses of the PAMM are equal or ñmatchedò [48]. Poly(methyl methacrylate) 

(PMMA) has been used as a stand-in analyte in several examples [26,29,47,63]. 

This is due to PMMA having an IR active carbon-oxygen molecular stretch 

vibration in the mid IR region at 52 THz (5.77 µm or 1733 cm
-1

). PMMA is also a 

convenient material as it is a well-known commercially-available off-the-shelf 

photoresist in micro/nano fabrication. IR elli psometry[64] was used to measure the 

complex optical properties of PMMA, as shown in Figure 4.        
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Figure 4. PMMA complex refractive index, imaginary (top) and real part (bottom), 

showing the C=O molecular bond resonance at 52 THz (1733 cm
-1

). 

2.2 Single Input Uncoupled System (SI-US) 

Temporal coupled mode theory (TCMT) will  be used to show the impedance 

matching condition between the Ohmic (internal) and radiative (external) losses, 

i.e. ɔ0 = ɔe, in the metamaterial results in perfect absorption of incidence radiation. 

Figure 5 shows a circuit visualization for a PAMM as analogous to a single 

resonator coupled to a single input waveguide [47,48,58]. This single resonator 

coupled to a waveguide can be described by the following coupled mode equation 

[29,47,58,60]: 

Frequency (THz)

Wavenumber(cm-1)

Frequency (THz)

Wavenumber(cm-1)

ə
n
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Ὠὥ

Ὠὸ
= Ὦ‫0ὥ ‎0 + ‎Ὡὥ+ ‌Ὓ+  (2.1a) 

Ὓ =  ὧὛ+ + Ὠὥ (2.1b) 

where a is the normalized energy of the resonator, ɤ0 is the resonant frequency 

where the PAMM is "perfectly" absorbing, ɔ0 is the internal loss of the resonator, ɔe 

is the external loss that describes the energy that does not "couple" into the 

resonator, S
+  

is the input field excitation onto the resonator, and S
- 
is the reflected  

field. The constants Ŭ, d, and, c need to be determined.  

 

 

Figure 5. Circuit description for a SI-US. 

With the use of the principles of time reversal and energy conservation, it can be 

shown that [58]: 

|‌| = 2‎Ὡ (2.2a) 

Ὠ= 2‎Ὡ (2.2b) 

ὧ=
‌

Ὠ
= 1 (2.2c) 

Therefore, Eq. 2.1 can be written as: 

V

Zo

Resonator

Zo

S
+

S
-
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Ὠὥ

Ὠὸ
= Ὦ‫0ὥ ‎0 + ‎Ὡὥ+ 2‎ὩὛ

+  (2.3a) 

Ὓ = Ὓ+ + 2‎Ὡὥ (2.3b) 

Next, impedance matching results when the reflection coefficient, 11ה, is zero, 

where the scattering matrix in general is: 

╢ = ⱷ╢+  (2.4) 

Therefore, it can be seen that for a SI-US, there is only one element in the matrix: 

Ὓ =
Ὦ‎Ὡ ‎0 + (‫ (‫0

Ὦ‎Ὡ+ ‎0 (‫ (‫0
Ὓ+  (2.5) 

When at resonance, it can be seen that: 

11ה ‫0 =
‎Ὡ ‎0
‎Ὡ+ ‎0

 (2.6) 

It can be seen that when ɔe = ɔ0, then 11ה ‫0  = 0, which has been described as an 

impedance matched condition or critically coupled, where coupling is described in 

terms of the incident field coupling into the PAMM. Under- and over-coupled in 

terms of loss have been described as ɔe < ɔ0 and ɔe > ɔ0 respectively.  Figure 6 

provides a visual representation in the form of a Loci diagram in Figure 6.a[58] and 

a log curve that indicates the under- and over-coupled region with the ratio of ɔe/ɔ0 

at the resonated frequency ɤ0 in Figure 6.b [29,47]. The blue stars indicate the 

common point between the two representations.  
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Figure 6. a) Loci diagram of the reflection coefficient as seen in [58]. The critical 

circle is indicated in black. Increasing frequency is with clockwise rotation on the 

respective circle. Zero Ὅά(11ה), indicated with a black line, is when the incident 

wave resonates with the resonator ("a"). Each dashed line circle on the Loci is a 

value to the ratio of ɔe/ɔ0. b) Visualization of under- and over-coupling of the 

incident field at resonator resonance [29,47]. The blue stars in a) and b) indicate the 

same point for reference. As the Loci moves to PEC or PMC limits, the blue stars 

become indistinguishable from each other. The under- and over-coupled regions are 

indicated in orange and red respectively. 

 

2.3 Resonant Coupling Between PAMM and Molecular 

Resonance 

The TCMT description is expanded to include another equation that incorporates 

the introduction of a molecular resonance. In the framework of absorption, the 

intention of coupling a PAMM to a molecular resonance is to enhance the 

absorption signature of the bare molecular resonance. In comparison to the PAMM, 

the PMMA absorption is very small under excitation. If a dark mode (subradiant) is 

defined as a high Q-factor resonance that weakly couples to the incident 
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excitation[29,47], then a dark mode would be analogous to a molecular resonance. 

Conversely, the PAMM resonance that interacts strongly to the incident excitation 

would be defined as a bright mode (superradiant) [29,47]. The interference between 

a bright and dark mode results in a Fano resonance[51,52,54,65] and produces the 

typical asymmetrical line shape and scattering cross-section, ů,  as shown in Figure 

7 [66].    

 

 

Figure 7. The typical asymmetrical scattering cross section of Fano resonance is 

shown as a function of frequency for when the asymmetry parameter, q, is equals 

one (red solid line). The limiting cases of q = 0 and q = Ð (solid blue and black 

respectively) are also shown for reference.  
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Using a TCMT description, Fano resonance[51,54,55], polaritonic systems[67-69], 

and electromagnetically induced transparency (EIT) or absorption (EIA)[70-73], 

phenomena can be described. The TCMT equations are as follows, where Figure 8 

shows a circuit realization of the PAMM-PMMA coupled system [47, 54, 55, 58, 

67]:  

Ὠὥ1

Ὠὸ
= Ὦ‫1ὥ1 ‎1 + ‎Ὡὥ1 + Ὦὠὥ2 + ‌Ὓ1

+

Ὠὥ2

Ὠὸ
= Ὦ‫2ὥ2 ‎2ὥ2 + Ὦὠὥ1

Ὓ = ὧὛ+ + Ὠὥ1

 (2.7) 

where a1 is the PAMM (bright) resonance, a2 is the molecular (dark) resonance, ɤ1 

is the PAMM resonant frequency, ɔ1 is the internal loss of the PAMM, ɔe is the 

external loss of the PAMM, ɔ2 is the absorptive losses of the molecular resonance, 

and V is the coupling strength between the PAMM and molecular resonance. S
+ 

and 

S
-
 are the inputted field excitation and reflected field of the PAMM respectively.   

 

Figure 8. Circuit visualization for a single input couple resonator system. 

 

V
Resonator 

Zo

S
+

S
-

Resonator

Zo
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Using a matrix notation, the scattering matrix can be determined: 

╢(ⱷ) = ╬+ ▀ ♪ (2.8) 

In the case of the single input coupled resonance system (SI-CS), then it can be 

seen that the scattering matrix is as follows [47,67]: 

Ὓ11 Ὓ12

Ὓ21 Ὓ22
=
ὧ1 0
0 0

+  

‌Ὠ1[Ὦ‫ ‫2 + ‎2] 0
0 0

det[ ]
 

(2.9) 

The determination of the matrix ɋ provides the anti-crossing (level repulsion) 

dispersion relation that is plotted in Figure 4. Due to the single input, only the S11 

parameter is of interest; therefore [47,67]: 

Ὓ11 =  ὧ1
‌Ὠ1 Ὦ‫ ‫2 + ‎2

‫ ‫1 Ὦ(‎1 + ‎Ὡ) ‫ ‫2 Ὦ‎2 ὠ2
 (2.10) 

where [47, 58, 67]: 

±‫ =
‫1 + ‫2

2
+
Ὦ

2
[ ‎1 + ‎Ὡ + ‎2]

±
‫1 ‫2

2

2 (‎1 + ‎Ὡ) ‎2
2

2

+ ὠ2 +
Ὦ

2
[‫1 ‎2][‫2 (‎1 + ‎Ὡ)]  

(2.11) 

It can be seen from Figure 4 and Eq. 2.11 that under the condition ɤ1 = ɤ2 = ɤ0, the 

maximum splitting or repulsion is denoted by 2ɋ; therefore, 2ɋ = |ɤ+(ɤ0)- ɤ-(ɤ0)| 

> 0, which leads to the result [74-76]:  

ὠ>
‎1 + ‎Ὡ ‎2

2
 (2.12) 
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Due to the non-trivial nature of non-linear and non-orthogonal modes[77,78], the 

challenge becomes determining constants c, d, and Ŭ; as such, primary results are 

derived. A similar process as in the case of SI-US, of applying energy conservation 

and time reversal, is used[58] and it is assumed that the coupling strength 'V' is a 

real constant with all frequencies. The power in each resonator is as follows [58]: 

Ὠὡ1

Ὠὸ
= ὥ1

Ὠzὥ1

Ὠὸ
 + ὥ1

Ὠὥ1
ᶻ

Ὠὸ
= 2 ‎1 + ‎Ὡ +

ὠ2‎2
‎2

2 + ‫ ‫2
2
ὡ1

Ὠὡ2

Ὠὸ
= ὥ2

Ὠzὥ2

Ὠὸ
 + ὥ2

Ὠὥ2
ᶻ

Ὠὸ
= 2 ‎2 +

ὠ2(‎1 + ‎Ὡ)

(‎1 + ‎Ὡ)
2 + ‫ ‫1

2
ὡ2

 (2.13) 

Using time reversal, it can be seen that the energy that is scattered is a result of the 

energy in the bright resonator and the energy coupled from the dark resonator with 

S
+  

turned off and no internal losses where hatted terms, for example, denote time ,‫ 

reversal terms.   

Ὠὡ

Ὠὸ
=
Ὠὡ1

Ὠὸ
+
Ὠὡ2

Ὠὸ
= 2‎Ὡὡ1

2ὠ2‎Ὡ
(‎Ὡ)

2 + ‫ ‫1
2
ὡ2 = ȿὛ1ȿ

2 (2.14) 

From Eq. 2.7, the normalized bright and dark resonator amplitudes can be solved 

as: 

ὥ1 =
‌Ὓ1

+ Ὦ‫ ‫2 + ‎2
Ὦ‫ ‫2 + ‎2 Ὦ‫ ‫1 + (‎1 + ‎Ὡ) + ὠ2

ὥ2 =
Ὦὠ‌Ὓ1

+

Ὦ‫ ‫2 + ‎2 Ὦ‫ ‫1 + (‎1 + ‎Ὡ) + ὠ2

 (2.15) 

and assuming the detuning [74], ‏ḳ|‫1 is zero, the time reversed ,|‫2 

excitation is =‫ ‫1 Ὦ‎Ὡ, and no internal loss; then: 
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ὥ1 =
‌Ὓ1

+

2‎Ὡ 1 +
ὠ2

2‎Ὡ
2

ὥ2 =
Ὦὠ‌Ὓ1

+

2‎Ὡ
2 1 +

ὠ2

2‎Ὡ
2

 (2.16) 

Given at t
-
 = 0, |an| =|aὲ| and |S1

-
| = |S1

+
| then: 

Ὓ1
+ 2

= 2‎Ὡὡ1 +
2ὠ2‎Ὡ

(‎Ὡ)
2 + ‫ ‫1

2
ὡ2 = 2‎Ὡὡ1 +

2ὠ2‎Ὡ
(‎Ὡ)

2 + ‫ ‫1
2
ὡ2 (2.17) 

Combining the results of Eq. 2.16 and Eq. 2.17, and leaving Ŭ as a function of ‫ 

results in: 

ȿ‌ȿ= 2‎Ὡ 1 +
ὠ2

2‎Ὡ
2

‎Ὡ
2 ‎Ὡ

2 + ‫ ‫1
2

‎Ὡ
2 ‎Ὡ

2 + ‫ ‫1
2 ὠ4

1
2

 (2.18) 

Next, solving for d1 from Eq. 2.7 it can be seen that: 

|Ὓ1 | = Ὠ1ὥ1 (2.19) 

when |S1
+
| = 0; therefore: 

ȿὛ1ȿ
2 = |Ὠ1ȿ

2|ὥ1ȿ
2 = 2‎Ὡȿὥ1ȿ

2 +
2‎Ὡὠ

2

‎Ὡ
2 + ‫ ‫1

2
ȿὥ2ȿ

2 (2.20) 

where: 

ȿὥ2ȿ
2 =

ὠ2ȿὥ1ȿ
2

‎2
2 + ‫ ‫2

2
 (2.21) 

which leads to: 
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|Ὠ1| = 2‎Ὡ 1 +
ὠ4

[(‫ ‎2+2(‫2
2] ‫ ‫1

2 + ‎Ὡ
2

1
2

 (2.22) 

Using conservation of energy to solve for c1, the net power is then coupled into the 

resonator. One can be either be dissipated or coupled into the second resonator (x12) 

adding to the energy rate of buildup: 

ȿὛ1
+ȿ2 ȿὛ1ȿ

2 =
Ὠὡ1

Ὠὸ
+ 2‎1ὡ1 + ὼ12ὡ1 + ὼὈὛȿὛ1

+ȿ2 (2.23) 

The nature of xDS is revealed later. Solving for dW1/dt similar to Eq. 2.13, it can be 

seen that:  

Ὠὡ1

Ὠὸ
=  2 ‎1 + ‎Ὡὡ1

2‎2ὠ
2

‫ ‫2
2 + ‎2

2ὡ1 + |‌|[Ὓ1
+ὥ1
ᶻ+ Ὓ1

+ᶻὥ1] (2.24) 

and from squaring the last equation in Eq. 2.7: 

ȿὛ1ȿ
2 = ȿὛ1

+ȿ2 2‎Ὡὡ1

2‎2ὠ
2

‫ ‫2
2 + ‎2

2ὡ1 + ὼ12ὡ1 + ὼὈὛȿὛ1
+ȿ2 + |‌|[Ὓ1

+ὥ1
ᶻ+ Ὓ1

+ᶻὥ1]

ȿὛ1ȿ
2 = ȿὧ1ȿ

2ȿὛ1
+ȿ2 + ȿὨȿ2ὡ1 + ȿὧ1ȿȿὨ1ȿ[Ὓ1

+ὥ1
ᶻ+ Ὓ1

+ᶻὥ1]

 (2.25) 

After combining the two equations in Eq. 2.25, it follows that: 

ȿὛ1
+ȿ2 ȿὧȿ2 + ὼὈὛ 1 + ὡ1 ȿὨ1ȿ

2 2‎Ὡ
2‎2ὠ

2

‫ ‫2
2 + ‎2

2 + ὼ12

+ Ὓ1
+ὥ1
ᶻ+ Ὓ1

+ᶻὥ1 ȿὧ1ȿȿὨ1ȿ+ ȿ‌ȿ= 0 

(2.26) 

It can be seen from Eq. 2.26 that [58,67,68]: 

ȿὧ1ȿ=
ȿ‌ȿ

ȿὨ1ȿ
 (2.27) 
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The mathematical model is used similar to that in references [29,47,48] in 

parameter fitting the numerical results. Previous papers have reported work in 

PAMM, and resonated coupling has been reported in [75,79-81]. However, the 

silicon cavity thickness was on the order of the wavelength in the cavity, which 

leads to thick films of over 1 µm. From a private communication with collaborators 

at the Infrared Systems Lab at University of North Carolina at Charlotte, the cavity 

fil m thickness was too large to fabricate reliably. Therefore, a sub-wavelength 

cavity or spacer structure was investigated.  

 

2.4 Numerical Modeling of PAMM and Resonated Coupling 

2.4.1:  Nano Patch Metasurface PAMM 

A metallic nano patch metasurface with a sub-wavelength spacer of an 

ellipsometrically measured[64] amorphous Si (a-Si) spacer on a gold ground plane 

is seen in Figure 9. An overcoat of a dispersionless layer of PMMA was initially 

placed on the structure to remove any red or blue shifting of the PAMMôs 

resonance due to the dispersionless index on the PMMA as seen in Figure 9.    
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Figure 9.  A dispersionless PMMA overcoated on top of a PAMM made of a gold 

patch metasurface separated from a ground plane by an amorphous silicon spacer. 

Both TE and TM at two orientations and various incidence angles are considered.  

 

The SI-US mathematical analysis that was applied to the structure in Figure 9 is 

shown in Figure 10. Figure 10.a compares simulated results to the parametric 

fit ting of Eq. 2.5, where the values are tabulated in Table 1. Figure 10.b confirms 

the over-, critically-, and under-coupled relationship in terms of a Loci diagram. 

Figure 10.c shows the linear relationship between the external (ɔe) and internal (ɔ0) 

loss as a function of spacer thickness [29,47,48]. The patch length and unit cell 

were tuned so that the center resonance was approximately at the same frequency. 

Figure 11 is the spectral and angular resolution for the absorption for the CC case 

for both incident modes seen in Figure 9. It can be seen that the design patch 

metamaterial provides a polarization that is insensitive to transverse electrical (TE), 
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transverse magnetic (TM), or either mode orientation while providing a wide field-

of-view [48].  

 

Table 1. SI-US model fit parameters used in Eq. 2.5. 

 

 

Using the numerical tool, the PAMM field enhancement can be extracted as a 

function of frequency of the over-, critically-, and under-coupled cases, as seen in 

Figure 12. The maximum field enhancement is at the frequency of maximum 

absorption, as to be expected. The maximum field enhancement is located on the 

edges on the gold nano-patch [47]. Similarly, from plotting the magnitude of the H 

field in Figure 13, a magnetic dipole can be seen located in the spacer, which 

agrees with the reports in [48]. The magnetic dipole is responsible for the perfect 

absorption nature of the PAMM [48]. Next, the PMMA molecular resonance is 

introduced to the over-, critically-, and under-coupled cases. The developed SI-CS 

mathematical model is used to analyze mode spitting.   

 

f0 [THz] ɔe [THz] ɔ0 [THz]

OC 53.4 3.81 1.44

CC 53.5 2.07 2.07

UC 52.4 1.14 2.65
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Figure 10. a) Numerical, stars (*), and mathematical model, solid line, are shown 

for a case of over-, critically-, and under-coupled cases. b) The Loci diagram for 

these cases are shown. c) The linear relation between the external (ɔe) and internal 

(ɔ0) loss is shown where the critically-coupled case is at 90 nm amorphous Si 

spacer thickness. 
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Figure 11. Normalized absorption spectra and angularly-resolved spectra for the 

critically-coupled cases as seen in Figure 9. Both TE (a, b) and TM (c, d) 

polarizations are shown for both mode orientations. 
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Figure 12. Field enhancement, |Emax/E0|
2
, for the over-, critically-, and under-

coupled case of the nano patch PAMM. 

 

 

Figure 13. The relative intensity magnitude of the H field in the modeled PAMM. 

 

2.4.2:  Resonant Coupling to a Nano Patch PAMM 

The molecular resonance is then introduced to PAMM, which results in mode 

splitting or repulsion[45,47,73,82] and superscattering[47,83,71,72] in the over-

coupled case. Figure 14.a shows the numerical and mathematical model parameter 
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fitted for Eq. 2.10 for resonated coupling for the three cases of over-, critically-, 

and under-coupled. The parameters used for the mathematical model fit are 

tabulated in Table 2. For comparison, the Loci diagram generated from Eq. 2.10 for 

resonated coupling is shown in Figure 13.b. The loop in the Loci indicates the 

nonlinear nature of mode coupling that is occurring. It can also be seen that 

limὪO ±ЊὙὩ[Ὓ11(ʖ)] <  1, which is out of bounds of the limit of ὙὩ[Ὓ11(ʖ)] . 

In the parametric fitting of Eq. 2.10, it is assumed that the coupling strength is a 

real constant for all frequencies [74-76]. However, if coupling strength is due to the 

near field, which in turn is related to storage field and field enhancement, then the 

frequency dependence of the coupling strength should mirror the field 

enhancement. However, it can be seen in Figure 13.a and in other references 

[51,54] that the mathematical model deviates from the simulation results in a 

similar fashion. For the CC and UC cases, mode splitting or EIT [55,73] is 

observed. On the other hand, the OC case superscattering or EIA[72,84] is 

observed as can be seen in Figure 14. Figure 14.b shows the avoidance crossing 

dispersion relation where the variation of only the A-Si spacer thickness results in 

changing the PAMM resonance or absorption maximum. 
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Figure 14. Absorption spectra for PAMM resonantly coupled to a molecular 

resonance at 52 THz (white dashed line) for OC (a) and UC (b) cases for various A-

Si spacer thicknesses. c) Numerical, stars (*), and mathematical model, solid line, 

are shown for resonant coupled cases of over-, critically-, and under-coupled cases. 

 

Table 2. SI-CS model fit parameters using Eq. 2.10. 

 

 

2.5 Conclusion 

Mode coupling between the resonances of a wide-field-of-view PAMM and a 
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f1 [THz] ɔe [THz] ɔ1 [THz] f2 [THz] ɔ2 [THz] V[THz]

OC 52.0 1.93 4.26 51.9 0.22 0.71

CC 52.1 2.34 2.12 51.8 0.20 0.70

UC 51.5 2.87 1.16 51.9 0.14 0.70
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using TCMT, and the critical coupling condition where the internal and external 

losses are equal or impedance matched is shown. It is shown in Figure 14 how 

transition from undercoupled to overcoupled design of the PAMM results in 

transition from a transparency window centered at 52 THz to an absorption peak at 

52 THz which provides evidence of mode coupling between the PAMM and 

vibrational resonances. Mode coupling based metamaterial devices provide benefits 

in selectivity as can be seen in Figure 14.a and 14.b. As the resonance of the 

metamaterial is tuned via the silicon spacer, the metamaterial molecular vibration 

coupled system decouples and the resonances return to their uncoupled states. In 

the case of a critically or undercoupled design, a unique mode splitting signature is 

produced and is used for identification purposes by increased absorption of 

metamaterial molecular vibration coupled system.  
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Chapter 3:  Fano Resonance Metamaterial 

(FRMM)  

3.1 Introduction  

Fano resonance[66] is evidenced by an asymmetric line shape, as seen in Figure 7. 

This line shape in a classical sense can be described as the interaction between a 

bright and dark mode. A Fano resonance metamaterial (FRMM)[51,55,85,86] is a 

metamaterial whose structure supports an asymmetric reflection or transmission 

spectrum. In the application of biosensing and/or molecular detection, FRMM 

provides a high Q-factor dark resonance, which can provide a relatively large field 

enhancement. In this section, TCMT and numerical analysis with HFSS are used on 

FRMM sensors. Then PMMA's molecular resonance is introduced to observe mode 

coupling between the PMMAôs molecule resonance and the metamaterial 

resonance, and the effect of breaking the symmetry of the metasurfaces seen in 

Figure 16 is investigated with a discussion on the role of multi-coupled resonances. 

In the conclusion, there is a discussion of electromagnetic induced transparency 

(EIT) and absorption (EIA) and their relationship to FRMM design.  
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Figure 15. A FRMM as modeled in HFSS for a) a dual nano rod and b) a dual nano 

slot. 

 

3.2 Reflection Spectrum 

3.2.1:  TCMT Mathematical Model for Fano Resonance 

Given that in Figure 16 there is no ground plane, a new TCMT model needs to be 

developed with two ports. A single input single output coupled system (SISO-

CS)[67,77,78] is as follows:   

Ὠ

Ὠὸ

ὥ1

ὥ2
=
Ὦ‫1 (‎1 + ‎Ὡ) Ὦὠ12

Ὦὠ21 Ὦ‫2 ‎2

ὥ1

ὥ2
+
‌11 ‌12

‌21 ‌22

Ὓ1
+

Ὓ2
+

Ὓ1
Ὓ2

=
ὧ11 ὧ12

ὧ21 ὧ22

Ὓ1
+

Ὓ2
+ +

Ὠ11 Ὠ12

Ὠ21 Ὠ22

ὥ1

ὥ2

 (3.1) 

where Eq. 3.1 can be written in general matrix form as: 

╪= ♪╢+

╢ = ╬╢+ + ▀╪
 (3.2) 

a) b)
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Metasurface

Silicon 
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where =
j ʖ ʖ1 + (ɾ1 + ɾe) jV12

jV21 j ʖ ʖ2 + ɾ2
. From the general 

scattering matrix in Eq. 2.8, it follows for S11 and S12 for a two-terminal coupled 

system that: 

Ὓ11 ‫ = ὧ11 +  

‌21Ὠ12 Ὦ‫ ‫1 + ‎1 + ‎Ὡ +‌11Ὠ11 Ὦ‫ ‫2 + ‎2 Ὦ[‌11Ὠ12ὠ21 + ‌21Ὠ11ὠ12] 

det ( )
 

(3.3.a) 

Ὓ21 ‫ = ὧ21 +  

‌21Ὠ22 Ὦ‫ ‫1 + ‎1 + ‎Ὡ +‌11Ὠ21 Ὦ‫ ‫2 + ‎2 Ὦ[‌11Ὠ22ὠ21 + ‌21Ὠ21ὠ12] 

det ( )
 

(3.3.b) 

Exploiting the dark mode definition for a2 (i.e. Ŭ21 =Ŭ22 = 0) leads to: 

Ὓ11 ‫ = ὧ11 +
‌11Ὠ11 Ὦ‫ ‫2 + ‎2 Ὦ‌11Ὠ12ὠ21

det ( )
 (3.4.a) 

Ὓ21 ‫ = ὧ21 +
‌11Ὠ21 Ὦ‫ ‫2 + ‎2 Ὦ‌11Ὠ22ὠ21

det ( )
 (3.4.b) 

It can be seen that Eq. 3.4 reduces to the SI-CS case, Eq. 2.9, when d12 = d21 = d22 = 

0.  

 

Figure 16. Two-port coupled resonant circuit system that can use a Fano resonant 

metamaterial (FRMM). 
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3.2.2:  FRMM Simulated Results 

Both unit cells shown in Figure 15 are simulated without and with PMMA's 

molecular vibrational resonance. Figure 17.e and 18.e show the dual nano rod and 

slot metasurface unit cell. Both unit cells were designed such that the transmission 

coefficient exhibits the Fano line shape, as seen in Figure 17.a and 18.a, as well as 

the phase distributions of the E-field and H-field for the nano rod and slot 

respectively, as seen in Figure  17.b-d and 18.b-d.  The conclusion of this chapter 

explores the results of whether the reflection coefficient exhibits the Fano line 

shape. 

 

 

Figure 17. a) Transmission, reflection, and absorption of the dual nano rod 

metamaterial structure where the transmission exhibits typical asymmetric resonant 

response, which can be contributed to Fano-like resonant coupling; b-d) are E field 

phase distributions that show a parallel (bright) and anti-parallel (dark) field 

distribution; e) Top view of symmetric dual nano rod unit cell (meta-atom). 
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Figure 18. a) Transmission, reflection, and absorption of the dual nano rod 

metamaterial structure where the transmission exhibits a typical asymmetric 

resonated response, which can be contributed to Fano-like resonant coupling; b-d) 

are H field phase distributions that show an anti-parallel (dark) and parallel (bright) 

field distribution; e) Top view of symmetric dual nano rod unit cell (meta-atom). 
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FRMM. Then the asymmetry of the metasurface is tuned, as seen in the inset of 
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‌= 100%(1 ɝὒ/ὒ) (3.5) 

where ȹL and L are shown in the inset of Figures19.a and 20.a. Figure 19.a shows 

the nano rod FRMM without PMMA and the effect of tuning the asymmetry of the 

metasurface where the black solid line is the symmetrical case for reference. With 

the FRMM with PMMA's molecular resonance, the typical mode splitting in the 

symmetrical case can be seen in Figure 19.b. It can be seen in Figure 19.b that by 

tuning the asymmetric parameter, there is an enhancement at both resulting hybrid 

mode resonances at around 51.4 THz and 52.6 THz, where enhancement is defined 

as a decrease in reflection. Similar results can be seen in Figure 20 at the hybrid 

modes frequency 51.4 THz in the case of the nanoslot FRMM where an 

enhancement can be seen when breaking the symmetry of the FRMM. The addition 

of breaking the symmetry of the FRMM adds an additional degree of freedom of 

tunability as can be seen in Figure 19.a and 20.a. The introduction of the PMMAôs 

vibrational resonance results in the mode splitting signature. The mode splitting 

signature reflectance can be further reduced or enhanced thus allowing better signal 

to noise ratio for reflection based spectrometry. 
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Figure 19. a) Nano rod metasuface without PMMA phonon resonance with varying 

asymmetry as depicted in the inset; b) The resulting mode splitting as a result of 

varying asymmetry of the metamaterial unit cell with the introduction of the 

PMMA molecular resonance. 
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Figure 20. a) Nano slot metasuface without PMMA phonon resonance with varying 

asymmetry as depicted in inset; b) The resulting mode splitting as a result of 

varying asymmetry of the metamaterial unit cell with the introduction of the 

PMMA molecular resonance. 

 

3.4 Complementary Fano Resonated Metamaterial 

As evident in Figures 17.a and 18.a, the transmission spectrum of both FRMMs, 

nanorod and nanoslot, have Fano resonance lineshapes. However, if a 

complementary metasurface i.e., metasurface where the metallization is inverted 

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Slot without PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 32.4%

a = -8.82%

a = -17.6%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Slot with PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 32.4%

a = -8.82%

a = -17.6%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Rod without PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 50%

a = 32.4%

a = 14.7%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Rod with PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 50%

a = 32.4%

a = 14.7%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Slot without PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 32.4%

a = -8.82%

a = -17.6%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Slot with PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 32.4%

a = -8.82%

a = -17.6%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Rod without PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 50%

a = 32.4%

a = 14.7%

a = 0%

51 51.5 52 52.5 53 53.5
0

0.2

0.4

0.6

0.8

1

Nano Rod with PMMA

R
e

fl
e

c
ti
o

n

Frequency [THz]

 

 

a = 50%

a = 32.4%

a = 14.7%

a = 0%

ȹL ȹL

a) b)

L L

a)

b)



38 

 

(e.g. nanopatch metasurface complement would be a nanohole metasurface), is 

considered then the resulting transmission spectrum is inverted similar to that 

reported in [71,88-94]. Figure 21.a shows the results of a nano rod FRMM where 

the reflection coefficient exhibits the Fano resonated line shape as evident by the E-

field phase distribution shown in Figure 21.c to 21.e. The results in Figure 21.b are 

the same as in Figure 17.a for comparison. Considering only the symmetric case, 

Figure 21.f shows the mode splitting results in the reflection spectrum. Figure 22 

shows the transmission coefficient with the presence of the PMMA's molecular 

resonance. The results in the transmission have been explained in terms of 

electromagnetic induced transparency (EIT) and absorption (EIA)[71,72] where 

EIT and EIA are evident in the solid and dashed blue line respectively in Figure 22. 

Other work on this topic includes the nano slot EIT/EIA pair. Also, considering a 

field enhancement frame of mind with the use of the hybridization model, it can be 

predicted that the overall field enhancement of the uncoupled plasmonic dark mode 

increases with the coupling to the plasmonic bright mode.              
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Figure 21. a) Nano slot complement, i.e., nano rod metasurface with Fano-like 

resonance reflection coefficient; b) The result in Figure 17.a for comparison where 

a Fano-like resonance transmission coefficient exists; c-e) are E field phase 

distributions that show a parallel (bright) and anti-parallel (dark) field distribution. 

f) The resulting mode splitting reflection coefficient when PMMA's phonon 

resonance is introduced. 
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Figure 22. The resulting mode splitting signature in the transmission coefficient for 

electromagnetic induced transparency (EIT) and absorption (EIA) in the solid and 

dashed blue lines respectively. 

 

3.5 Conclusion 

Nanorod and nanoslot metamaterials which exhibit asymmetric transmission 

spectra were explored for mode coupling with a molecular resonance of PMMA at 

52 THz. The asymmetric transmission spectrum present is akin to a Fano resonance 

lineshape which results from the interaction of a broad spectral symmetric 

resonance (bright mode) and a high Q factor asymmetric resonance (dark mode). 

Both field distributions for a bright and dark mode are present as evidence in 

Figure 17.b-d and 18.b-d, and coupling arises due to temporal overlap brought on 

by the broad spectral wide of the bright mode. With the addition of the molecular 
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vibration, a third resonance is introduced to the coupling system. The stronger 

coupling between the dark mode and vibrational resonance results in the mode 

coupling signature. The high Q-factor nature of the FRMMôs dark mode with a 

spectral line with of less than 1 THz allows for advantages in selectivity as 

compare to the spectrally broad bright mode like in the case of the PAMM where 

the spectral width is approximately 8 THz. Symmetry breaking of the metasurface 

leads to an enhancement or reduction of the reflectance in the mode splitting 

signature which provides advantage to signal to noise ratios in reflective based 

sensing. Finally, a complementary metasurface to the nanoslot, i.e. nanorod 

metasurface with an inverted transmission and reflection spectrum, is investigated. 

In the case of the PAMM, an under and overcoupled metamaterial results in EIT 

and EIA respectively. A similar analogue is drawn between a metasurface and its 

complement coupled to a molecular resonance. Figure 22 compares the 

nanorod/nanoslot metasurface cases with inverted transmission/reflection 

spectrums. The ñoriginalò metasurface has a reduction in its transparency (EIA) at 

the resonance 52 THz as compared to the ñcomplementò which has an increase in 

its transparency (EIT). The ñcomplementò metasurface has an advantage when 

transmission-based spectroscopy is employed due to the increase in transparency in 

the coupled system.  
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Chapter 4:  Phonon Polariton Enhanced 

Hybrid Waveguide via 4H-SiC Substrate 

4.1 Surface Phonon Polariton Theory 

Surface plasmon polaritons (SPPs), see Figure 23.a, result from the coupling of 

electromagnetic radiation to free electrons in metal, which results in oscillation of 

electron charge density at the boundary of a metal and dielectric [7,95]. SPPs result 

in high field enhancement, which aids in spectroscopy and biosensing applications 

[7]. Typically, SPPs occur in a band of frequencies between near infrared (NIR) to 

ultraviolet (UV). For applications in molecular detection in the mid-IR (MIR) to 

long-IR (LIR), SPPsô field enhancement becomes negligible. A solution to this is 

the use of surface phonon polaritons (SPhPs)[4,30,96] as seen in Figure 23.b. 

SPhPs are a result of coupling between transverse optical (TO) phonons in the IR 

and THz regime [30,97]. SPhPs have been demonstrated[4,98-100] and have 

applications ranging from long propagation length waveguiding in the IR to 

biosensing[3,4].   Large field enhancements of over 10
7 
due to localized hot spot in 

an IR dipole antenna feed gap using SPhP have been reported in [30]. 
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Figure 23. Illustration of a) free electrons in metal, or b) molecular displacement in 

polar material resulting in optical phonons, oscillated with exciting radiation 

forming a) SPP or b) SPhP modes. 

 

Mathematically, SPPs and SPhPs are treated identically with Maxwell's equations 

and boundary conditions. It has been shown[7] that SPP and SPhP propagation 

supports only TM surface modes. As a starting point for determining the dispersion 

relation of a SPP (or SPhP), the single surface interface case of an SPP (or SPhP) is 

considered. Figure 24 shows the geometry of a single interface between a plasmon 

supporting noble metal (or a polar dielectric) and a dielectric with complex 

permittivity Ůd and Ům respectively.  
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Figure 24. SPP and SPhP single interface propagation structure where Ůd and Ům 

represent dielectric and metal(or polar dielectric) complex relative permittivity 

respectively of the two half spaces. 

 

It has been shown[7], that TM solution field equations for x > 0 (dielectric half 

space) are: 

Ὄώᾀ= ὃ2Ὡ
ὮὯὛὖὬὖᾀὩὯὨὼ

Ὁᾀᾀ= Ὦ
ὃ2

Ὠ‐0‐‫
ὯὨὩ

ὮὯὛὖὬὖᾀὩὯὨὼ

Ὁὼᾀ=
ὃ1

Ὠ‐0‐‫
ὯὛὖὬὖὩ

ὮὯὛὖὬὖᾀὩὯὨὼ,

 (4.1) 

and for x < 0 (metal or polar dielectric half space) are: 

Ὄώᾀ= ὃ1Ὡ
ὮὯὛὖὬὖᾀὩὯάὼ

Ὁᾀᾀ= Ὦ
ὃ1

ά‐0‐‫
ὯάὩ

ὮὯὛὖὬὖᾀὩὯάὼ

Ὁὼᾀ=
ὃ1

ά‐0‐‫
ὯὛὖὬὖὩ

ὮὯὛὖὬὖᾀὩὯάὼ,

 (4.2) 

where kSPhP is the complex propagation constant for the surface polariton mode, and 

kd/km are the wavevectors perpendicular to the material interfaces, and A1/A2 are 

complex constants determined from boundary conditions. From the continuity of 

Ům

Ůd
x

zy
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the boundary at x = 0, it can be seen from Hy(z) that A1  = A2, and therefore from 

Ez(z), it can be seen that: 

Ὧά
‐ά

+
ὯὨ
‐Ὠ

= 0. (4.3) 

From the formulation of the TM from Maxwellôs equation, it has been shown that 

the propagation constant, ksp, is in the two regions as the following [7]:  

ὯὛὖ
2 + Ὧά

2 = ‐άὯ0
2

ὯὛὖ
2 + ὯὨ

2 = ‐ὨὯ0
2.

 (4.4) 

Solving for ksp using Eqs. 4.3 and 4.4 gives the dispersion relationship for SPP or 

SPhP as follows [4,30]:   

ὯὛὖ= Ὧ0

‐ά(Ὠ‐(‫
‐ά(Ὠ‐+(‫

. (4.5) 

The propagation distance, Lm, of the TM mode in the z direction can be determined 

using Eq. 4.5 in terms of power or intensity as: 

ὒm =
1

2Ὅά{Ὧίὴ}
. (4.6) 

The nature of the TM polariton mode is that of an exponentially decaying field in 

the transverse direction, x direction as shown in Figure 24, to the propagation into 

the metal (or polar dielectric) and dielectric regions, i.e., evanescent wave. The 

decaying exponential terms can be determined by substituting Eq. 4.5 into Eq. 4.4 

resulting in:  
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ὯὨ= Ὧ0

‐Ὠ
2

‐ά(Ὠ‐+(‫

Ὧά = Ὧ0

‐ά
2 ((‫

‐ά(Ὠ‐+(‫
.

 (4.7) 

Similar to propagation distance, a skin depth concept can be applied to the TM 

surface modes; a penetration depth within the two regions is defined as: 

=Ὠ‏
1

2Ὅά{ὯὨ}

ά‏ =
1

2Ὅά{Ὧά}
,

 (4.8) 

where the total modal extent of the TM surface mode in the transverse direction can 

be defined as: 

=ὖὈ‏ |Ὠ‏| +  ά|. (4.9)‏|

Using ŭPD and Lm, a figure of merit (FOM) can be established similar to the case of 

hybrid plasmonic waveguides (FOM = Lm/ãAm, where Am is the modal area [3]) 

which is: 

Ὂὕὓ=
ὒά
ὖὈ‏

. (4.10) 

The FOM in Eq. 4.10 is used to guide the design of the hybrid waveguide in the 

following section. The FOM in Eq. 4.10 provides away to compute an optimum 

trade-off between mode confinement and propagation distance as a function of 

frequency of the polariton mode. The optimum FOM will provide a frequency 

range in which to design the hybrid phonon polariton waveguide. 
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4.2 4H-SiC Phonon Polariton Hybrid Waveguide 

Optical interconnects in the MIR to LIR can be achieved via a polar dielectric with 

a highly reflecting metallic-like material (ŮPD < 0), which is known as the 

reststrahlen band [4]. Silicon carbide (SiC) is a polar dielectric with a multitude of 

polytypes or crystalline structures [101-104]. The 4H-SiC polytype, seen in Figure 

25, is commercially available as a substrate. 4H-SiC reststrahlen band and uniaxial 

complex permittivity tensor components[105] can be seen in the inset of Figure 26. 

4H-SiC is difficult to pattern or etch into a tracer waveguide; however other 

polytypes such as 3C-SiC, aluminum nitride (AlN), and gallium nitride (GaN) thin 

films can be heteroepitaxially grown onto a 4H-SiC substrate [106]. 

 

 

Figure 25.(a) Simple 2D projection of the unit cell of the 4H-SiC with crystal 

ordination plane vector directions.(b) 4H-SiC 3D zigzag crystal plane with unit cell 

shown. [101]  
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Figure 26. 4H-SiC uniaxial anisotropic complex dielectric tensor components. The 

top shows the real part of the relative permittivity, and the bottom shows the 

dielectric loss tangent of 4H-SiC. The reststrahlen band is highlighting the inset of 

the real part of the permittivity[105]. 
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The hybrid waveguide geometry that is considered is shown in Figure 27. GaN is a 

low-loss dielectric in the reststrahlen band of the 4H-SiC, as seen in Figure 28, in 

which a heteroepitaxial thin film can be grown on 4H-SiC. The hybrid waveguide 

shown in Figure 27, which is feasible to fabricate, provides a long propagating 

waveguide with highly confined modes in the mid- to long-wave IR bandwidth. 

The amorphous silicon (A-Si) tracer is a square with a width ódô resting on a 

heteroepitaxial thin film of a GaN spacer of thickness óh,ô which is grown on a 4H-

SiC substrate. 

 

 

Figure 27. Geometry of the 4H-SiC enhanced hybrid phonon polariton hybrid 

waveguide. A square tracer of A-Si with dimensions d x d is separated a distance h 

from a 4H-SiC substrate by a GaN spacer. The principal axes anisotropic crystal of 

the 4H-SiC substrate is labeled with their respective relative permittivity.     

 




