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Ashtekar’s spinorial formulation of general relativity is used to study perturbations of gravita-
tional instantons corresponding to finite-action solutions of the Euclidean Einstein equations (with a
nonzero cosmological constant) possessing an anti-self-dual Weyl curvature tensor. It is shown that,
with an appropriate “on-shell” form of infinitesimal gauge transformations, the space of solutions to
the linearized instanton equation can be described in terms of an elliptic complex; the cohomology
of the complex defines gauge-inequivalent perturbations. Using this elliptic complex we prove that
there are no nontrivial solutions to the linearized instanton equation on conformally anti-self-dual
Einstein spaces with a positive cosmological constant. Thus, the space of gravitational instantons is
discrete when the cosmological constant is positive; i.e., the dimension of the gravitational moduli
space in this case is zero. We discuss the issue of linearization stability as well as the feasibility of
using the Atiyah-Singer index theorem to compute the dimension of the gravitational moduli space

when the cosmological constant is negative.

I. INTRODUCTION

In the functional-integral approach to quantum gravity
it is common to perform integrations over classes of Eu-
clidean geometries in order to give a tractable definition
to the integral over four-geometries,' to define a “ground
state,”? to study statistical mechanics and/or thermo-
dynamics, 3 etc. In a semiclassical approximation, the
Euclidean functional integral is dominated by finite-
action Euclidean signature solutions to Einstein’s
equations—the “gravitational instantons.” While many
such instantons have been found, the detailed structure of
the space of gravitational instantons is not nearly as well
understood as that of, say, the instantons of non-Abelian
gauge theory. From a classical perspective gravitational
instantons, especially those with self-dual curvature, are
important because they shed light on the rather compli-
cated structure of the Einstein equations themselves.*

It is natural to ask whether the variety of techniques
used to study self-dual solutions to the field equations of
non-Abelian gauge theory>® could be fruitfully employed
also in general relativity. At first sight, the connection
seems difficult to make because the two theories are rath-
er different both physically and geometrically; however,
as we shall see, progress can be made by using the spi-
norial variables introduced by Ashtekar.” In terms of
these variables, the resulting form of Einstein’s theory
parallels that of a non-Abelian gauge theory with, in the
Euclidean case, an SU(2) gauge group. While most work
using these new variables has been devoted to the canoni-
cal formulation of general relativity, a covariant four-
dimensional formulation also exists,® and in this covari-
ant formulation it has been shown’ that there is a self-
duality ansatz analogous to that used to find instantons in
gauge theories. In the gravitational case this ansatz
leads, in particular, to all finite-action solutions (on a
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compact manifold) of the Euclidean Einstein equations
with a cosmological constant (Einstein spaces) that pos-
sess an anti-self-dual Weyl tensor. The ansatz has since
been shown!® to be equivalent to a metric-independent,
quadratic condition on the curvature of an SU(2) connec-
tion on the spacetime manifold so, at least as far as con-
formally self-dual instantons are concerned,'' the metric
can be taken completely out of the picture.

In this paper we will show that at least one method of
analysis that proved useful in analyzing self-dual solu-
tions of non-Abelian gauge theories can be carried over
to general relativity in terms of the Ashtekar variables.
In particular, following Ref. 5, we will study perturba-
tions of conformally (anti-)self-dual Einstein spaces there-
by obtaining a ‘‘tangent space” approximation to the
space of solutions of the ansatz given in Refs. 9 and 10.
As we shall see, the perturbations can be described in
terms of an elliptic complex, the cohomology of which
defines the space of solutions to the linearized equations
modulo the action of the gauge group, which is the semi-
direct product of a local SU(2) group and the spacetime
diffeomorphism group. The equivalence classes of such
solutions turn out to be defined by a surprisingly simple
elliptic differential equation. Indeed, using this equation
we show that there are no nontrivial solutions to the
linearized equations on compact manifolds with a posi-
tive cosmological constant. Therefore, in this case, the
space of (anti-)self-dual instantons is discrete; i.e., the
gravitational moduli space is trivial. Moreover, when the
cosmological constant is negative, the dimension of the
moduli space can be determined by an application of the
Atiyah-Singer index theorem.

We organize this paper as follows. Section II gives the
key equations that summarize the results of Refs. 9 and
10. In Sec. III we present the linearized equations and
study the influence of the gauge group on their
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mathematical structure. Section IV deals with the con-
struction of an elliptic complex that describes gauge-
inequivalent solutions to the linearized equations. There
we prove that the gravitational moduli space is zero di-
mensional when the cosmological constant is positive. In
Sec. V we digress a bit to comment on the relationship
between the form of infinitesimal gauge transformations
we need to define the complex and a more conventional
form of the transformations. In Secs. VI and VII we dis-
cuss issues which are important for understanding the
space of instantons when the cosmological constant is
negative. In particular, in Sec. VI, we confront the well-
known fact that solutions to linearized equations of
motion are not necessarily in one-to-one correspondence
with solutions of the full, nonlinear equations; this is the
issue of linearization stability. Section VI formulates the
stability question in terms of the framework we have
developed but, unfortunately, does not answer it. We dis-
cuss in Sec. VII the possibility of applying the Atiyah-
Singer index theorem to compute the analytical index of
instanton perturbations. As in non-Abelian gauge theory
this theorem, when combined with a linearization stabili-
ty argument, allows one to compute the dimension of the
space of solutions to the full, nonlinear instanton equa-
tion (for negative cosmological constant). We conclude
in Sec. VIII with a discussion of the results obtained and
work left to be done.

II. PRELIMINARIES

We begin with the spinorial form of the Einstein equa-
tions for a spacetime of Euclidean signature.’ They can
be expressed in terms of a soldering form y 24, which is a
nondegenerate map between vector fields and SU(2)
XSU(2) spinors,!? and an SU(2) spin connection A /2.
The spacetime metric is obtained via

e G TP 2.1

while the curvature of the spin connection is given by

Fop *8=2(3, Ay *P+ 4, " 4,;cP) . 2.2)
If we define the self-dual two-forms
2ab AB’zzy[aAA'Vb]A'B ’ (2.3)

then the vacuum Einstein equations with cosmological
constant A can be written as

D(,2,,"?=0,
A4’ B a4 B (2.4)
y[a Fbc]A +%A‘y{a sz]A =0,

where D, is the derivative operator built from 4,. (No-
tice that our cosmological constant is —6 times that of
Ref. 9. Our conventions are consistent with the Einstein
equations taking the form R, =Ag,;.)

The observation of Samuel,’ as modified by Capovilla
et al.,'* is that (2.4) will be solved by any SU(2) curva-
ture satisfying

1F (0 *PF 1 P'=0 . (2.5)

The idea behind (2.5) is that if a curvature satisfies (2.5)
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then it can be written as the exterior product of two (pos-
sibly degenerate) soldering forms; this product is then
taken to define X via

AB_— __ 1 AB
Fab - K}"zab ’

(2.6)

where A, a constant of dimension (length) ™2, is needed
for dimensional consistency. If we demand that the sol-
dering form so defined is nondegenerate and yields a
metric [through (2.1)] of Euclidean signature, then it is
simple to verify that (2.5) and/or (2.6) provides a solution
of (2.4) corresponding to a compact Riemannian mani-
fold. As the two-forms = are self-dual (with respect to
the metric built from y), so too are the SU(2) field
strengths; it can be shown that the solutions generated in
this manner have anti-self-dual Weyl tensor. Thus Eq.
(2.5), which we shall refer to as the instanton equation,
leads to conformally anti-self-dual Einstein spaces. It has
been shown!® that all such spacetimes arise from solu-
tions to (2.5) [or (2.6)].

Because Egs. (2.4), (2.5), and (2.6) are polynomial in all
basic variables, it is permissible to allow the soldering
form, and hence also the metric, to be degenerate, al-
though in such a case the resulting spacetime geometry is
not Riemannian. In consideration of the loss of
mathematical control over the various differential opera-
tors that accompanies the use of a degenerate metric, in
what follows we will always assume that the metric
defined implicitly by (2.5) is nondegenerate; we will
briefly discuss the significance of this assumption at the
end of the paper.

III. LINEARIZED EQUATIONS

We now study the equations governing perturbations
of solutions to (2.5). If we denote the perturbation by C,
and make the replacement

Aa AB__ Aa AB+ Ca AB ,
then to first order in C, (2.5) becomes

F[ab( ABDCCd]CD):O , 3.1)
where we have assumed that the unperturbed background
connection satisfies (2.5). Equation (3.1) represents a set
of five first-order, linear partial differential equations for
the perturbation and is a priori independent of any space-
time metric, although we are always free to replace F
with 2 as in (2.6).

The linearized instanton equation (3.1) must necessari-
ly have several degenerate “‘directions’ in the space of
perturbations as a consequence of SU(2)-gauge and
diffeomorphism covariance. Thus, given a pair of su(2)-
valued functions N and M, and a real-valued function f,
any perturbation of the form

C,=D,N +(Vbf)F,, +[D*M,F,,] (3.2)

will automatically satisfy (3.1) when the instanton equa-
tion, (2.6) in particular, is satisfied. Notice that in (3.2),
and also in what follows, we are using an su(2) matrix no-
tation that suppresses spinor indices. The first term in
(3.2) represents local SU(2) transformations while the
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latter two terms are associated with diffeomorphism co-
variance [the bracket in the last term is an su(2) commu-
tator]. We will show later (in Sec. V) how these terms
correspond to the action of an infinitesimal
diffeomorphism; for now, observe that the transformation
is parametrized by seven functions, which is also the
number of functions parametrizing the (semidirect) prod-
uct of the local SU(2) and spacetime diffeomorphism
groups. For the analysis to follow, it is necessary to use
the “on-shell” form of the transformation given in (3.2);
notice that this expression makes explicit use of the
metric.

To understand the degeneracy associated with (3.2) it is
convenient to employ the notion of the principal symbol
of the differential operator appearing in (3.1). The princi-
pal symbol is obtained by replacing the highest-order par-
tial derivatives with covectors, which we shall denote k_,
and setting any lower-order terms to zero. The symbol of
the operator in (3.1) is thus a linear map from the vector
space of perturbations at a point to totally symmetric
valence-four spinor-valued four-forms at the same point.
If this map were injective for every choice of (nonvanish-
ing) k,, then the corresponding differential operator
would be elliptic.'* Denoting the differential operator as
D,,

D,C:=F,,'*2D,C,;?, (3.3)
the symbol §(D, ) is given by
E(D})-C=F, "%k, C P . (3.4)

In terms of the symbol, the degenerate directions corre-
spond to perturbations which set &£(D,)-C to zero, i.e.,
are in the kernel of §(D,). Using (2.6), we have

C, Ekernelé(D,) = 3% 48 C,P'=0 . (3.5)

At a given point, k? defines an orthogonal three-
dimensional vector space; if we denote by o, 4 the asso-
ciated SU(2) soldering form, then (3.5) is equivalent to

o 4Bc D= (3.6)

From (3.6) the degenerate directions for the symbol are
easily deduced. First, because o, 4® is the soldering form
for the three-space orthogonal to k¢ we can satisfy (3.5)
by choosing
C,=Nk, , (3.7
where N is an arbitrary su(2)-valued function. The
remaining independent solutions of (3.5) will be orthogo-
nal to k¢ to uncover their explicit form, observe that if
we assume C?1k“ and remove the symmetrization of the
spinor indices in (3.6), then the resulting map is just the
usual isomorphism from [su(2)-valued] three-dimensional
covectors into [su(2)-valued] SU(2) spinors. Thus the
remaining degeneracies arise from the information associ-
ated with various traces on spinor indices that is lost
when the indices are symmetrized; in particular, when
C°lk® the perturbation has nine independent com-
ponents (at a given point) while the symmetrized product
in (3.6) contains only five independent components. It is
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thus straightforward to verify that the remaining four
components which satisfy (3.5) are of the form

C,=fk’F,, (3.82)

and

C,=k’[M,F,,], (3.8b)

where, as before, f and M are real and su(2)-valued func-
tions, respectively. Comparison of (3.7) and (3.8) with
(3.2) reveals that the degenerate directions for £(D,) cor-
respond to the symbols of the differential operators con-
tained in (3.2). We conclude that the existence of the
gauge transformation (3.2) spoils the injectivity of &(D,)
thereby preventing the operator D, from being elliptic.

We can summarize the structure of the linearized
theory as follows. The solutions to the linearized instan-
ton equation are elements of the kernel of a linear map
D,, which transforms su(2)-valued one-forms into
valence-four (totally symmetric) spinor-valued four-
forms,

D:Af—AS%E (3.9)

with D, C given in (3.3). Physically trivial perturbations
(ignoring for now the question of linearization stability)
are generated by another linear map D,; the domain of
D, is a product space consisting of real-valued and su(2)-
valued functions, while the range of D consists of su(2)-
valued one-forms:

D0:A0® A0g® Aog—>A]g > (310)

with Dy(f,M,N) given in (3.2). Physically relevant per-
turbations are therefore equivalence classes [C] corre-
sponding to the kernel of D, modulo the image of D:

[C]=kernelD, /imageD,, . (3.11)

From the discussion given above, we expect that elements
of [C] will be determined by linear elliptic operators and,
hence, for a given compact spacetime, [C] will be a
finite-dimensional subspace (possibly with singularities) of
all possible perturbations. To analyze the structure of
[C] in detail, it is useful to embed the problem of deter-
mining the equivalence classes (3.11) into the mathemati-
cal framework of elliptic complexes as we shall now dis-
cuss.

IV. ELLIPTIC COMPLEX

We saw in the last section that instanton perturbations
are controlled by linear maps between sections of various
vector bundles on the spacetime manifold M,

Dy D,

0—>A®ASERASE—— AF——AE®8 50, 4.1)
satisfying
D,D,=0. (4.2)

Equations (4.1) and (4.2) define a complex. We have al-
ready pointed out that

kernel§(D,)=image&(D,) , (4.3)
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which means that the complex is elliptic'* [to verify this
it is useful to observe that the sum of the dimensions of
the vector spaces (fibers) associated with the first and
third bundles in (4.1) is equal to the dimension of the vec-
tor space associated with the second bundle].

To proceed further we will need to define adjoints of
the operators Dy, D, and for this purpose we require an
inner product between sections of a given bundle. We
define the inner products using the metric associated with
the given solution of (2.5) to contract tensor indices and
provide a volume element, while any free spinor indices
are contracted (traced) using € spinors in the usual way.
For example, two sections C,C € A £ have an inner prod-
uct given by

(c,C)=[ | VEg"C,""Cy iy

= —trfM\/gg"bCa Cy » (4.4)
where the integral is over the spacetime manifold M; we
use analogous definitions for sections of the other two
bundles. The adjoint operators are defined (schematical-
ly) via

(w,Dv)=(D*w,v) , (4.5)
and are easily computed to be
Do*:Alg—'" A0® A0g® Aog ’
(4.6)
D,*C=(trF*D,C,;[D,C,,F®);—D°C,) ,
D 1 *:A4g®g—>A1g 5
4.7)

* _— ped b__ABCD
D *o=F“pD 0wy ,

where the action of the derivative operator D, is extend-
ed (when necessary) to include tensor indices via the
unique torsion-free connection that is compatible with
the metric obtained from the solution of (2.5). Notice
that we have used the instanton equation to simplify (4.7).
In terms of the basic differential operators and their
adjoints we can construct (elliptic, self-adjoint) ‘“Lapla-
cians” on sections of each bundle. They are defined as

AgAg®ASERAE—A® AL AL,

(4.8)
Ayp:=Dy*D, ,
AI:Alg-—>Alg y
(4.9)
A;:=D,*D,+D,D} ,
A22A4g®g——->A4g®g N
(4.10)

Az::DlD]* .

Using the Fredholm alternative,'*!* these Laplacians
provide an orthogonal decomposition of sections of each
vector bundle; thus,

Ag® Agf® Af=rangeD,*@kernell , (4.11)
A f=rangeD @rangeD,*dkernelA, , (4.12)
Ag%8=rangeD, @kernell, , (4.13)

where the orthogonality of the summands is with respect
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to the inner products described above. Exactly as in the
case of de Rham cohomology, one can show that the
equivalence class [C], defined in (3.11), can be identified
with the kernel of the Laplacian (4.9) on Lie-algebra-
valued one-forms:

kernelD, /imageD,=kernelA, . (4.14)

Using the definition (4.9), it is straightforward to verify
that perturbations are elements of kernel A, if and only if

D,C=0=D,*C, (4.15)

which can be viewed as a combination of the linearized
instanton equation and “‘gauge fixing” conditions. Alter-
natively, we show in Appendix B that solutions to (4.15)
must satisfy

(—D°D, +A)C,=0 .

Equation (4.16) is clearly an elliptic second-order
differential equation and, as mentioned above, because
the kernel of an elliptic operator on a compact manifold
is always finite dimensional, the physical instanton per-
turbations form a finite-dimensional subspace of all possi-
ble gravitational perturbations. But we can say even
more: (4.16) has no solutions if A>0. The proof is stan-
dard: contract both sides of (4.16) with C, and integrate
over M to obtain

—trfM\/gD“cbDac,,=7urfo/§c"ca

(4.16)

(4.17)

which can only be satisfied if C, =0. If A <0, there is no
such obstruction to solutions of (4.16).

The simplicity of (4.16) and the resulting obstruction to
solutions when the cosmological constant is positive are
results that differ substantially from the corresponding
results in non-Abelian gauge theory.>® Indeed, (4.16) im-
plies that the space of solutions to the full, nonlinear in-
stanton equation consists of a discrete set of points when
A >0 irrespective of the spacetime topology, while in
gauge theory the space of instantons is a finite-
dimensional manifold the dimension of which is con-
trolled by the topology of the base manifold and the
second Chern number of the principal fibration. Techni-
cally, the difference stems from the fact that in gauge
theory one demands that the unperturbed curvature as
well as its perturbation are self-dual, while in the gravita-
tional case the unperturbed curvature is self-dual but the
curvature perturbation is required to be anti-self-dual
(modulo gauge transformations) as can be deduced from
(4.15). In broad terms this difference between the gauge
and gravitational instanton perturbation theories can be
attributed to the way that the metric is treated in the
gravitational case: the spacetime metric, needed to define
self-duality, is not fixed a priori as it is in gauge theory,
but is instead determined by solving the instanton equa-
tion.

V. DIFFEOMORPHISMS

As promised, we now return to the relationship be-
tween the transformation (3.2) and the action of
infinitesimal diffeomorphisms on the spin connection. As
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we pointed out, this relationship holds only “on shell”;
i.e., we must make explicit use of the spacetime metric
which is obtained by solving the instanton equation.

An infinitesimal diffeomorphism can be represented by
a complete vector field ¥V? on M, which acts on SU(2)
connections as

A,—A,+C, ,

(5.1
C,=V°F,, .

This action of infinitesimal diffeomorphisms, because it is
manifestly covariant with respect to local SU(2) transfor-
mations, is somewhat more convenient than the ordinary
Lie derivative [which ignores su(2) indices]. Equation
(5.1) differs from the Lie derivative by what is effectively
an infinitesimal SU(2) transformation:

VbF,,=V%, A, + 4,3,V°—08,(V4,)—[A4,,V°4,]

=L,A,—D,(V®4,). (5.2)

Given a vector field representing an infinitesimal
diffeomorphism and the metric obtained by solving the
instanton equation, we can lower the vector index and
treat the vector as a one-form; then, using the Hodge
decomposition on one-forms, '* we split the one-form into
the sum of the gradient of a function, a divergence of a
two-form, and a harmonic one-form:

V=8 V=V, f +V0,, +h, . (5.3)

In (5.3) V, is the unique torsion-free, metric compatible
derivative operator on tensors. Application of the Hodge
decomposition to the two-form w itself reveals that only
its exact part contributes to (5.3), so for the purpose of
our discussion o can be chosen to satisfy

V[awbcl=0 . (5.4)
Finally, the one-form 4 is harmonic and therefore satisfies
Viehp=0=Vh, . (5.5)

It is easy to see that we can replace o with (twice) its
self-dual part in (5.3). First, decompose o into its anti-
self-dual (L) and self-dual parts (M):

W =(Lg+M,) , (5.6)
which satisfy, from (5.4),

ViaMp=—V(oLp - (5.7
If we take the dual of both sides of (5.7) we obtain

VéM,, =V°L, . (5.8)

Therefore we can replace the two-form « with twice its
self-dual part giving a contribution to (5.1) of the form

(Vo b)Fy, =2(V°M b)F,,

=[D®M,F,,]+1AD,M , (5.9)
where the su(2)-valued function M is defined via
M, =13, 4BM . , (5.10)
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which is permissible because M, is self-dual.'® To ob-
tain the final equality in (5.9) one needs to use the instan-
ton equation and various 2 identities (see Appendix A).

The last term in (5.9) is an SU(2) transformation and
can be absorbed into a redefinition of N in (3.2); thus
infinitesimal diffeomorphisms correspond to perturba-
tions of the form

C,=(Vf)F,, +[D°M,F,,1+h*F,, . (5.11)

Equation (5.11) agrees with the putative diffeomorphism
part of (3.2) except for the term involving the harmonic
one-form, which on an Einstein space satisfies

VbV, h,=Ah, . (5.12)

The differential operator on the left-hand side of (5.12) is
negative semidefinite; therefore, if A >0 there are no non-
trivial solutions to (5.12) (the Bochner vanishing
theorem). To see this explicitly, contract (5.12) with the
harmonic form and integrate over M to obtain

—fM\/g(V”h“)(Vbha)=ka\/gh“ha . (5.13)
If the cosmological constant is positive, then the left and
right sides of the equality in (5.13) are negative and posi-
tive semidefinite, respectively; thus, the only solution is
the trivial one. Incidentally, this implies that the mani-
fold must be simply connected. If A is negative then
there is no such obstruction to the existence of harmonic
one-forms, and we conclude that the transformation in
(3.2) can fail to capture all infinitesimal diffefomorphisms
when M is not simply connected and A <0. This fact did
not spoil the ellipticity of the complex we described in
Sec. IV because the space of harmonic forms is always
finite dimensional. Furthermore, the additional finite
number of diffeomorphism-orbit identifications that are
not captured by the cohomology of the complex in the
A <0 case are easily handled if one understands the topol-
ogy of the spacetime manifold M.

VI. LINEARIZATION STABILITY

The issue of linearization stability deals with the ques-
tion as to whether every solution of the linearized field
equations is an approximation to an exact solution of the
full, nonlinear equations (modulo gauge transformations).
A well-known strategy for answering this question'> is to
use the fact that (true) perturbations are, in geometric
terms, tangent vectors to the space of gauge-inequivalent
solution S of the full, nonlinear equations. If the space of
gauge-inequivalent solutions is a differentiable submani-
fold of all possible field configurations, then every tangent
vector is necessarily tangent to a curve in that manifold;
i.e., it is a first approximation to an exact solution. If
there are singular points in S, then when the instanton
equation is linearized around such points one can expect
to obtain spurious solutions. Thus we aim to identify the
conditions under which the space of solutions to the in-
stanton equation represents a smooth submanifold of the
space of SU(2) connections on M.’

To analyze the issue of linearization stability in the
geometric framework described above, it is convenient to
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rearrange the three-term elliptic complex constructed in
Sec. IV into an equivalent two-term elliptic complex as
follows. '* Consider the elliptic operator

D ZAlg—> A4g®g® A0® A0g® Aog y

D:=(D,,D,*), (6.1)
and its adjoint
D* :A43®g® Ao@ A0g® AOg—?Alg N
(6.2)
D‘:z(DI*,Do) )
along with the associated Laplacians
A:Alg—>A1g y
(6.3)
A:=D*D ,
A AECER Ag® AP® A — A EEE@ Ag® AE® Af
(6.4)

A':=DD* .

Physical perturbations, i.e., elements of [ C], are elements
of the kernel of D as can be verified by comparison with
(4.15). Furthermore, the orthogonal decompositions ob-
tained in Sec. IV are equivalent to the orthogonal decom-
position provided by the Fredholm alternative used in
conjunction with the elliptic operators D and D *:

Af=rangeD *®kernelD , (6.5a)

(6.5b)

If we think of the operator D as the differential of the
map that defines the submanifold S then, given (6.5a), we
can use the infinite-dimensional version of the implicit
function theorem to conclude that S is a smooth subman-
ifold, i.e., without singularities, wherever D is a surjective
map.'* From (6.5b), this requirement is equivalent to the
statement that the map D* is injective; thus we can
guarantee linearization stability at points of S where

AEE8R Ay® A*® A ¥ =rangeD@kernelD* .

kernelD * =kernelA'=0 . (6.6)

We have not yet been able to definitively characterize the
conditions under which (6.6) holds, so the issue of lineari-
zation stability, which is relevant for the moduli space of
instantons with A <0, must be settled in future work.

VII. THE INDEX OF INSTANTON PERTURBATIONS

The analysis of Sec. IV has shown that when A >0, the
space of instantons is discrete; in order to uncover the
possibilities which exist for A <0, we introduce the notion
of the analytical index!* of instanton perturbations. The
analytical index of the complex described in Sec. IV or VI
is a topological invariant defined to be the alternating
sum of the dimension of the kernels of the various Lapla-
cians:

I=dim(kerneldy) —dim(kernelA;)+dim(kernelA,)
=dim(kernelA’)—dim(kernelA)

=dim(kernelD * ) —dim(kernelD) . (7.1)
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From (7.1) we see that at points of linearization stability
the analytical index is equal to (minus) the dimension of
the space of physical perturbations, which in turn is just
the dimension of the space of solutions to the instanton
equation (2.5) modulo gauge transformations, i.e., —1I is
the number of gauge-invariant free parameters entering
into an SU(2)-spin connection on a given conformally
anti-self-dual Einstein space.!” Actually, to be complete-
ly precise, the above statement is valid provided that (in
the A <O case) there are no harmonic one-forms. If there
are solutions to (5.12) for A <0, then the dimension of S is
—1TI less the number of harmonic one-forms, so this
correction can be implemented provided one knows the
first Betti number of the manifold M.

The Atiyah-Singer index theorem'® can be applied here
to equate I to the topological index associated with the
various bundles we are using; we therefore have a con-
crete way of computing the dimension of S when A <O.
Because this method of obtaining the dimension of S re-
quires linearization stability—an unresolved issue—we
will present these results elsewhere.

VIII. DISCUSSION

One of the many intriguing features of the Ashtekar
variables is the degree of similarity they permit between
gravitation and gauge theory. While this similarity has
been used extensively in the canonical formalism,’ we
have seen that it is also useful in the covariant approach
to gravitational instantons. Indeed, it is hard to imagine
a simpler linearized instanton equation than (4.16), which
in fact is considerably simpler than its gauge theory coun-
terpart.

Perhaps the most striking consequence of the approach
to gravitational instantons in terms of the Ashtekar vari-
ables is the proof that the gravitational moduli space is
discrete when A>0. This implies that the 3+1 self-
duality ansatz of Ashtekar and Renteln (see, for example,
Refs. 4 and 9), which allows for an infinite dimensional
family of solutions to the instanton equation, can only be
locally valid when the spacetime is compact. Of course,
they realized this; their approach relied on the existence
of a foliation of the manifold, which is topologically quite
restrictive. The moduli space for self-dual instantons
with a negative cosmological constant is evidently going
to be more interesting than that which occurs when A > 0.
The interplay between topology and geometry in the
A <0 case can be analyzed at the linearized level via (7.1),
especially if one can establish linearization stability.

The outstanding question that remains then is whether
(or under what conditions) the instanton equation is
linearization stable when the cosmological constant is
negative. This is a nontrivial question in general relativi-
ty: Moncrief has shown that on Lorentzian spacetimes
with a compact Cauchy surface the Einstein equations
are linearization stable only if the unperturbed spacetime
does not possess symmetries.!> It seems likely that a
similar conclusion could be reached in the compact Eu-
clidean case, but this does not really help us here: gravi-
tational instantons, obtained via solutions to (2.5), corre-
spond to taking a (finite-dimensional) “slice” in the space
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of solutions to the Euclidean Einstein equations. It
remains to be seen whether this slice possesses singulari-
ties.

If the linearization stability issue can be brought under
control, then the approach of Sec. VII allows us to com-
pute the dimension of the gravitational moduli space (for
A <0), which, in the semiclassical approximation to the
Euclidean functional integral, is the space of zero modes
of the small fluctuation operator. An interesting exten-
sion of this work would be to compute the measure on
the moduli space; clearly one needs to consider the ghost
contributions here. In addition, our approach to study-
ing the space of gravitational instantons could be useful
in the semiclassical evaluation of the Hartle-Hawking
wave functional in the Ashtekar (‘“‘self-dual”) representa-
tion. Here, new issues arise because one must use an el-
liptic complex for manifolds with boundary. For exam-
ple, are there global obstructions to the use of the “self-
dual” representation, i.e., will some form of the Atiyah-
Patodi-Singer boundary conditions? be needed here?

The ability to treat gravitation in 2+ 1 dimensions as a
(Chern-Simons) gauge theory has allowed for a substan-
tial increase in our understanding of the quantum
mechanics of this system.?! One of the key ingredients in
the analysis of the 2+ 1 theory has been the possibility of
allowing for a degenerate spacetime metric. It is tantaliz-
ing to suppose that similar advances could be made in the
3+1 theory, and this expectation is given support by the
results of canonical quantum gravity in terms of the
Ashtekar variables.” As far as instantons are concerned,
however, while the instanton equation and its linearized
counterpart are indeed well defined when the metric (or
soldering form) is allowed to be degenerate, it seems very
little can be said about the solutions to such equations in
the degenerate case (mainly because the relevant opera-
tors are no longer elliptic), and for this reason we have al-
ways assumed the metric is nondegenerate. It is clearly
of great interest to find out what, if anything, can be said
in the degenerate case; it seems that new techniques will
be required to analyze this issue.

Finally, we should point out that while our results are
designed to be valid globally on M, they do require the
existence of a spin structure. It is well known that there
are manifolds upon which spinors simply cannot be
defined (without the introduction of additional structure);
therefore, the approach we have used to analyze the
space of gravitational instantons cannot be applied in
such cases.

Note added in proof. Results pertinent to the lineariza-
tion stability of (2.5) are now available; see Ref. 22.

ACKNOWLEDGMENTS

The author would like to thank M. W. Katoot for dis-
cussions. Thanks also to Abhay Ashtekar for contribut-
ing many improvements to the presentation of this work.

C. G. TORRE 41

This work was supported in part by a grant from the
Florida Technological Research and Development Au-
thority to the Florida Institute of Technology.

APPENDIX A: = IDENTITIES

We list below a pair of identities, involving products of
the two-forms X, that were used in the paper. They can
be derived from the definition (2.3) and the definition of

the inverse soldering form:
BE=5,%8 4%, (A1)

C

Yaa'Va

gbczab ABzchDz EACYaBR”VdR’D+€ADYaBRIYdR‘

R e PO L N PO
(A2)

Sop P2 45 = 48,18, 1+ L) . (A3)

APPENDIX B: DERIVATION OF (4.16)

The linearized instanton equation (3.1) is equivalent to

D,*D,C=0, (B1)
which implies

DYF,, s F°' 48D .C,P)=0 . (B2)
From (4.15) we also have

trF*D,C, =0, (B3)

[F*,D,C,]=0, (B4)

DbeC,=0. (BS)
Equations (B3) and (B4) imply

Feb4Bp C,CD=Fab(4BD C, CD) (B6)

so we can remove the symmetrization in (B2). Now, us-
ing (A3), (B2) can be replaced by

DY[(8,1%8, 14+ L€,,“)D.C,1=0 . (B7)
After expanding out (B7) one encounters terms involving
a gauge-covariant Laplacian, the Ricci tensor, the
Riemann tensor, the SU(2) curvature, and the gradient of
a divergence; the latter three of the these can be eliminat-
ed by using the cyclic identity for the Riemann tensor,
the self-duality of the SU(2) curvature, and (BS), respec-

tively. One thus finds (4.15) to imply
—-D°D,C,+R,°C,=0, (B8)

where R,“ is the Ricci tensor of the unperturbed metric.
For an Einstein space,

R,b=18,%,
and (B8) becomes (4.16).
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