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Abstract. We detected edges in noisy images using multiresolution
analysis with the wavelet transform. Products of wavelet coefficients at
several scales were used to identify and locate edges. We found that it
was important to consider the changes in edge position at different
scales to detect edges in noisy imagery. We analyzed one-dimensional
edges and compared the results of our approach with the first derivative
of the signal. In addition, we compared the results of noisy images with
another wavelet-based edge detection method. Our results led to im-
proved edge detection in noisy images. © 2000 Society of Photo-Optical Instru-
mentation Engineers. [S0091-3286(00)01709-8]
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1 Introduction

Edges in noisy images are often difficult to detect because
edge detection algorithms may be sensitive to noise. Most
edge detection algorithms can perform well on clear im-
ages, but in noisy images may miss images or produce false
edges caused by discontinuities in gray levels due to noise.
For these reasons, some approaches attempt to find edges in
smoothed images rather than the original ones to reduce the
effect of noise. For example, a combination of a Gaussian
low-pass filter and a Laplacian edge detection filter has
been used to detect edges.1 Canny discovered a useful ap-
proach that used a Gaussian filter to smooth images before
edge detection.2 The Canny edge detector generally per-
forms better than gradient methods, but the effectiveness of
Canny’s approach is different for different choices of the
thresholding and the standard deviation of the Gaussian fil-
ter. Hence, finding the proper values of these parameters is
important in detecting real edges. In an optimal approach
with respect to the signal-to-noise ratio, edges were de-
tected by a curve-segment-based functional guided by the
zero-crossing contours of the Laplacian-of-Gaussian
approach.3 These methods have been shown to be useful,
but in the presence of noise may detect false edges or miss
edges by excessive smoothing.

Nonlinear filters have been investigated because of their
ability to suppress noise and preserve signal features such
as edges. For example, filters have been used as nonlinear
edge enhancers functioning as prefilters for edge detectors;
filters were able to convert smooth edges to step edges and
suppress noise simultaneously.4 A classification of various
approaches to nonlinear filtering has been presented, result-
ing in three types of estimators according to the process of
the filter.5 Generally, the filtering window size and the pa-
rameters of the filter must be set manually according to the
input image. Thus, comparison of edge detection results
with different values of filtering window size and param-

eters are necessary to get pertinent values for the best edge
detection.

Mallat showed that a multiscale approach using a wave-
let transform could be equivalent to a multiscale Canny
edge detector.6 Multiscale approaches included those that
represented edge positions by local maxima in the absolute-
value distribution of the wavelet coefficients.7–9 Informa-
tion on local extrema and the modulus of the wavelet trans-
form has been used for multiscale corner detection.10 In
addition, theM -band wavelet transform has been used for
multidirectional and multiscale edge detection by decom-
posing an image intoM3M channels.11 The channels are
combined to produce zero crossing at locations of edges
corresponding to different directions and resolutions. These
and other wavelet-based approaches have often shown
promise by using the correlation between different scales of
an image.12–19

The correlation of noisy wavelet coefficients between
different scales has been shown to detect intensity discon-
tinuities better than traditional methods. A spatially selec-
tive noise filtration technique based on the product of the
wavelet transform at adjacent scales was shown to detect
edges.20 Although edges could be detected, edge locations
may be ambiguous or shift at multiple scales of the wavelet
transform. Therefore, a more robust technique is needed for
more general edge detection in noisy images.

In our approach, we also used the product of noisy
wavelet coefficients on different scales to reduce the effect
of noise. However, we also considered shifting edge loca-
tions through multiple scales for robust edge detection in
the presence of noise. In the next section we describe our
approach. Then, we show the results of experiments with
one-dimensional~1-D! signals, and compare our result with
that for the first derivative of the signal. We also compared
the results of noisy images to another wavelet-based edge
detection method. Finally, we discuss our conclusions.
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2 Wavelet Transform

2.1 Basis Functions

Like the Fourier transform~FT!, the wavelet transform
~WT! describes a function with basis functions. However,
the basis functions of the WT, scaling functions and wave-
lets, are often more complicated than the basis functions of
the FT, sines and cosines. Unlike the FT, the basis func-
tions in the WT are localized in both the input and the
wavelet domain. Like the FT, the WT is a linear operation
that is invertible and can be made orthogonal.

The general idea behind the wavelet transform is to rep-
resent any arbitrary function as a superposition of wavelets
based on a mother wavelet. Scaled and shifted versions of
the mother wavelet can be summed to represent an arbitrary
function, as in the FT scaled and shifted versions of sine
and cosine functions can be summed to represent an arbi-
trary function.

The WT maps a signal in the space domain into a scale-
translation domain using scaled and translated versions of a
mother wavelet. The continuous 1-D WT of the function
f (x) with respect to a mother waveletwjk(x) is

bjk5E f ~x!wjk~x! dx, ~1!

wherebjk are the wavelet coefficients, andj andk indicate
the scale and shift of the wavelet. In digital implementa-
tions, a dyadic family of wavelets is often used, so the
wavelet is written aswjk(x)522 j /2wjk(22 j x2k), where
j 51, 2, . . . . In this case, the wavelet is dilated by a fac-
tor of two at each increasing scale. In addition, the ampli-
tude of the wavelet increases by a factor of& at each
increasing scale, so scaled wavelets have the same energy
as the original mother wavelet.

In the WT, the input functionf (x) is compared with a
wavelet wjk(x) through a correlation or projection. A
wavelet-domain coefficient is computed for each particular
scale and shift value; it is equal to the correlation coeffi-
cient betweenf (x) and wjk(x). These coefficients deter-
mine the WT. In other words, a function is approximated
by a weighted sum of the scaled and shifted versions of the
mother wavelet. When they are added together, the original
signal is obtained. In addition, the WT is linear and super-
position holds.

The inverse WT reconstructs the original function by
summing weighted, scaled, and shifted versions of the
mother wavelet. The weights are the wavelet coefficients
bjk . The inverse WT sums over the 2-D scale-translation
space as

f ~x!5(
j ,k

bjkwjk~x!. ~2!

2.2 Multiresolution

The wavelet transform actually contains a dual basis of
wavelets and scaling functions represented bywjk(x) and
f jk(x). At a given scalej , the scaling functionsf jk(x) are

a basis for a signal. The signal at scalej and thedetailsat
scale j combine into a multiresolution of the signal at the
finer scalej 21:

signal at level j 1details at level j

5signal at level j 21. ~3!

The details come from the wavelet coefficients. Therefore,
at each scalej 21, we have two bases for the signal, either
the f jk(x)’s at level j 21 or thef jk(x)’s and wjk(x) at
level j :

(
k

aj 21k~x!f j 21k~x!5(
k

ajk~x!f jk~x!

1(
k

bjk~x!wjk~x!, ~4!

whereajk are scaling function coefficients,

ajk5E f ~x!f jk~x! dx. ~5!

The third term in Eq.~4! is the detail signal at scalej and
contains the difference of information between two succes-
sive approximations at scalesj and j 21. The multiresolu-
tion approximation is completely characterized by the scal-
ing function, and it is possible to choose scaling functions
with good localization properties in both the frequency and
input domains.

2.3 Implementation

The wavelet transform is usually implemented with a series
of identical filter banks; one filter bank is used for each
scale of the WT. The most popular configuration is a filter
bank that consists of a low-pass and a high-pass filter. A
block diagram of the filter bank is shown in Fig. 1~a!. In
many cases the outputs of the filters are downsampled.

Fig. 1 Filter-bank implementation of one level of the wavelet trans-
form: (a) one dimension, (b) two dimensions.

Lee and Kozaitis: Multiresolution gradient-based edge detection . . .

2406 Optical Engineering, Vol. 39 No. 9, September 2000

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 9/26/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



In the case of the two-dimensional separable WT, the
rows ~columns! are processed as in the 1-D case, followed
by the columns~rows!, as shown in Fig. 1~b!. In this case
an image is decomposed to an approximation and three
detail images. Because the WT has fewer coefficients at
decreased resolutions, the wavelet coefficients, which con-
tain the edge information, could be distorted by downsam-
pling. Therefore, we did not use downsampling in our
edge-detection method described in the next section.

We show a one-dimensional decomposition of a signal
in Fig. 2. Below the input signal are four approximations,
(kajk(x)f jk(x) using j 51,2,3,4. At the same scale we
also show the nondownsampled wavelet coefficientsbjk .

3 Edge Detection Method

The product of noisy wavelet coefficients between different
scales has been shown to detect intensity discontinuities
better than traditional methods.20 For example, to detect
edges using scalesj 51 and 2, a productC12 is formed
between a signal’s nondownsampled wavelet transform co-
efficients of the two scales,b1k andb2k . Then, the energy
of the productC12 is rescaled so that it has the same energy
asb1k :

(
k

~b1k!
25(

k
~C12!

25(
k

~b1kb2k!
2; ~6!

we drop the subscriptk in the following discussions to
simplify the notation. An edge is identified at a position
whereuC12u.ub1u. The edge locations are saved in a binary
spatial mask, and the values ofC12 andb1 are set to zero at
the locations of the edges. The energy ofC12 is again re-
scaled to that ofb1 as in Eq.~6!, and a new product is
formed betweenC12 andb1 . The energy of the new prod-
uct is rescaled to that ofb1 as before, edges are identified,
their locations saved, and another product formed between

the new C12 and b1 . This process is repeated until the
energy inb1 reaches some reference noise power inb1 .

3.1 Product Method

The simplest way to examine the consistency of wavelet
coefficients of different scales is by forming their product
between scales.20 When only considering two scales, we
can multiply the first scale (j 51) of wavelet coefficients,
b1 , by the second scale (j 52), b2 . If we are considering
an edge acrossn specific scales, we can multiply wavelet
coefficients in each pair of adjacent scales together, so that
there will ben21 signal multiplications. However, in the
most general case the best scales to use to detect edges may
be unknown. Therefore, forn scales there are (2

N) possible
scale combinations to be considered. Figure 3 shows a
noisy step signal where four levels of the wavelet transform
are considered for edge detection. First, the wavelet trans-
form without downsampling is calculated from the input
signal, whereb1 , b2 , b3 , andb4 indicate the wavelet co-
efficients for levels 1 to 4. The products between the four
levels were found, and edges identified by the iterative
method described previously in this section. The edge lo-
cation vector is a binary vector and contains only edge
location information. Then, the product ofb1 and the edge
location vector is formed to produce edge information. This
method works best for step edges, because it is clear at
every resolution where the edge is located. However, with
other types of edges, the position of the edge may not be
well defined or may appear to change at different resolu-
tions. Therefore, forming the products of different scales
may not indicate the consistency of an edge over multiple
scales.

3.2 Product with Shift Method

Because edge locations may shift according to scale, the
product method can be modified to form the product be-
tween shifted versions of the wavelet coefficients of a sig-
nal. For example, we may consider a 1-D example of the
product between the first two scales of a signal allowing an
edge to be shifted by one pixel in the right or left direction.
There are three possible products:b1b2 ~the product of
wavelet coefficients at scalesj 51 and 2!, b1b2L1 , and
b1b2R1 , whereb2L1 andb2R1 refer to shifts ofb2 to the left
and right by one location, respectively. To allow for the
shift of an edge between scales, we used the maximum
value of the three products at each location ofb1 as the
result of the correlation between scales. For three specific
scales, considering that an edge may shift by one pixel at
each scale, we get nine different products. Forn specific
scales, allowing a one-pixel shift between scales for edges,
3n21 signal multiplications are needed for a 1-D signal.

When considering edge positions that can shift by two
pixels between scales, more signal multiplications are
needed. For example, with edges that may shift up to two
pixels between scales, we get five products,b1b2 , b1b2L2 ,
b1b2L1 , b1b2R1 , andb1b2R2 , whereb2L2 refers to shifting
b2 by two pixels to the left, andb2R2 refers to shiftingb2
by two pixels to the right. With three specific scales we
must consider 25 signal multiplications; forn scales, 5n21

signal multiplications are needed, allowing a two-pixel shift

Fig. 2 Decomposition of input signal into four approximations with
associated wavelet coefficients.
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between scales for edges in a 1-D signal. For an edge lo-
cation to shift a maximum ofx locations, and considering
the product ofn specific scales, the product-with-shift
method uses the product

C1n5max$b1,kbs,k1t%, ~7!

wheres52, 3, . . . , n, t50, 11, 12, . . . 1x, and (2x
11)n21 signal multiplications are needed to determine the
edge locations. The data inC1n are the result of the itera-
tive process similar toC12 in the previous section. We
found that this method works well with a variety of edges;
however, the number of computations increases rapidly as
the number of scales is increased.

3.3 Alternative to Product-with-Shift Method

We wanted the same effect as the product-with-shift
method but without the computational expense. We ap-
proximated the product-with-shift method by initially find-
ing the edges considering only two scales, then combining
the result with wavelet coefficients from each additional
scale, one scale at a time, using the product-with-shift
method. For example, using wavelet coefficients from four
scalesb1 , b2 , b3 , andb4 , we used the product-with-shift
method initially on the two largest scales,b3 andb4 . Then,
the resulting edge information was combined withb2 using
the product-with-shift method. The result of that step was
then combined withb1 using the product-with-shift method
to determine the edge locations. Forn specific scales, the
number of signal multiplications is (2x11)(n21), which
can be significantly less than for the product-with-shift
method asn increases.

3.4 Image Edge Detection

The individual wavelet transforms in the horizontal and
vertical directions can be used to extend the 1-D edge de-
tection algorithm to images. The block diagram of the im-
age edge detection algorithm is shown in Fig. 4, using four
scales or levels of the wavelet transform. First, the wavelet
transform is applied to the input image in both the horizon-
tal and vertical directions as shown in Fig. 4~a!. Then, the
vertical and horizontal edge images are produced separately
as in the 1-D example using the alternative to product with
shift, and labeledWcv andWch , respectively in Fig. 4~b!.
The binary edge location imagesWh and Wv in the hori-
zontal and vertical directions are determined fromWcv and
Wch by thresholding them with some noise reference value
as indicated in Fig. 4~c!. Directional edge images are found
by forming the product of the edge location images and the
wavelet coefficients from the smallest scaleb1h andb1v as
indicated in Fig. 4~d!. Finally, the modulus of the sum of
these directional edge images,

M ~x,y!5~ uWhb1hu21uWvb1vu2!1/2, ~8!

represents the edge information in Fig. 4~e!. Figure 5 shows
an example of the edge detection algorithm in Fig. 4 using
images instead of block diagrams.

4 Experiments and Analysis in 1-D

We implemented the edge detection algorithm with Mal-
lat’s wavelet, which corresponds to a first derivative. We
considered noisy 1-D signals and compared the perfor-
mance of the edge detection algorithm with the first deriva-
tive of noiseless signals to determine how well the method

Fig. 3 Process of edge detection using the product method and four levels of the wavelet transform.
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rejected noise while detecting edges. We considered the
two edges shown in Fig. 6, which we refer to as a step edge
and a rounded edge; their first derivatives are also shown.
We found the mean squared error~MSE! between the edge
function produced by the alternative method from a noisy
edge and the first derivative of the edge function, for

signal-to-noise ratios~SNRs! of 1 to 50. For each value of
the MSE at a particular SNR we used 300 independent
noise signals.

We found the MSE between the first derivative of the
noiseless step edge and the noisy edge processed with the
edge detection algorithm as a function of SNR using sev-

Fig. 4 Block diagram of the image edge detection algorithm: (a) wavelet transforms in horizontal and
vertical directions for j51,2,3,4; (b) results of alternative method; (c) binary edge location; (d) edge
images formed by product of binary edge locations and wavelet coefficients at smallest scale; (e)
result (modulus of the sum of directional edge images).

Fig. 5 Same steps as Fig. 4, but using images.
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eral different combinations of scales, which are shown in
Fig. 7. In Fig. 7, corr 1* 2* 3 indicates the correlation of the
three smallest wavelet scales,b1 , b2 , andb3 , and similarly
for other scales. Note that the correlation here and in Ref.
20 refers to a product between scales rather than a correla-
tion operator. The dotted curves represent the first deriva-
tive of the noiseless edge, and the solid curves represent the
alternative method. In general, the results show that in-
creasing the number of levels in each algorithm lowered the
MSE by a small amount. In addition, eliminating the lowest
wavelet scales generally made the results less noisy at the
expense of increasing the MSE. At almost all data points,
the results of the product and alternative methods were
similar, and the product method had a lower MSE than the
alternative method.

Using the rounded edge, we found similar results: the
MSE generally decreased as the number of scales used in-
creased, as shown in Fig. 8. As before, we found that the

results became less noisy as the smaller scales were elimi-
nated. In contrast to the previous results, we found that as
the smaller scales were eleiminated, the MSE generally de-
creased. In addition, the alternative method almost always
had a lower MSE than the product method.

5 Experiments on Images

We applied our approach to images and examined the per-
formance with different combinations of scales. In addition,
we compared the results with those of Mallat’s method. In
Fig. 9 we show a 2563256-pixel gray-scale image without
noise and with SNRs of 50 and 10. We also show in the
same figure the results~inverted! using several different
combinations of scales in the edge detection algorithm with
the alternative method. In this example, it can be seen that
different combinations of scales can be used to detect
edges. However, as the SNR decreases, results that include
the smallest scales appear to be noisy. When the SNR was
10, the combination of scales 3 and 4 seemed to give the
best performance from a visual standpoint. These scales
could also be used for higher SNRs; however, using the
smaller scales gave more detail in the images. Using the
smaller scales is possible at higher SNRs because they are
less noisy.

We used four different 2563256 pixel images, shown in
Figs. 10–13, for comparison with Mallat’s method. The
images along with their noisy versions are also shown in
these figures. In each figure, the results of using Mallat’s
and our methods for scale 2 and scale 3 are shown. In each
of Figs. 10–13, the first row shows a noiseless image, and
the second and the third rows show the results of noisy

Fig. 6 Sample step and rounded edges and their derivatives used
for 1-D analysis.

Fig. 7 MSE between a noisy step edge processed by the alternative
method and the first derivative of a noiseless step edge, as a func-
tion of the SNR.

Fig. 8 MSE between a noisy rounded edge processed by the alter-
native method and the first derivative of a noiseless rounded edge,
as a function of the SNR.
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Fig. 9 Results of alternative method on image 1 using various
scales for a few different SNRs.

Fig. 10 Comparison of results on image 1 produced by Mallat’s
method for scales 2 and 3, and by the alternative method using the
same scales.

Fig. 11 Comparison of results on image 2 produced by Mallat’s
method for scales 2 and 3, and by the alternative method using the
same scales.

Fig. 12 Comparison of results on image 3 produced by Mallat’s
method for scales 2 and 3, and by the alternative method using the
same scales.

Fig. 13 Comparison of results on image 4 produced by Mallat’s
method for scales 2 and 3, and by the alternative method using the
same scales.
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images at SNRs of 50 and 10 respectively. The two middle
columns show the results using Mallat’s algorithm, and the
rightmost column shows our results. Visually, the results of
our method have less noise than those using Mallat’s
method in all cases.

6 Conclusion

We have shown that edges can be detected in noisy images
using a multiresolution approach involving the products of
wavelet coefficients of an image. Although the product of
wavelet coefficients at multiple scales was adequate for the
detection of step edges, it was important to follow the edge
from scale to scale for improved edge detection. Allowing
the edges to shift between scales increased the robustness
of the approach while only minimally affecting the perfor-
mance for step edges. Increasing the number of scales gen-
erally improved the results; however, using the smallest
scales often decreased performance at low SNRs. Gener-
ally, our approach showed improved noise immunity with
respect to edge detection. In addition, our results compared
favorably with Mallat’s wavelet-based method.
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