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ABSTRACT 
 

We reduced noise in images using a higher-order, correlation-based method. In this approach, wavelet 
coefficients were classified as either mostly noise or mostly signal based on third-order statistics. Because the higher 
than second-order moments of the Gaussian probability function are zero, the third-order correlation coefficient may 
not have a statistical contribution from Gaussian noise. Using a detection algorithm derived from third-order 
statistics, we determined if a wavelet coefficient was noisy by looking at its third-order correlation coefficient. 
Using imagery of space shuttle tiles, our results showed that the minimum mean-squared error obtained using third-
order statistics was often less than that using second-order statistics. 
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1 INTRODUCTION 
 
The wavelet transform has been used in denoising because it usually compacts a signal better than it does noise, and 
the noise and signal can often be separated due to this property. A transform coefficient can be seen as a cross-
correlation between a basis function and an input signal. Therefore, a transform is a collection of cross-correlation 
coefficients between an input and the basis functions of the transform. To denoise a signal in the case of additive 
noise, noisy coefficients can be eliminated or the noise subtracted. Identifying coefficient values in the presence of 
noise is crucial to denoising. 
 
Denoising methods are often based on estimates of the magnitude or power of the signal and noise present. Some 
popular soft thresholding methods in the wavelet domain have been developed for real signals. [1] Similar 
approaches have been developed for a variety of thresholding methods [2-4] including a hard threshold for 
nonorthogonal transforms [5], a method based on Bayes estimation [6], and a soft threshold for complex signals. [7] 
Some recent methods include those that address noise distributions that are not necessarily Gaussian by detecting 
outliers based on an iterative method [8] or robust regression [9]. In general, these methods detect values that 
strongly influence second-order statistics. 
 
Promising results have been obtained with methods that resemble Wiener filtering. Because the Wiener filter is an 
optimal linear filter if the complete second-order statistics of the signal and noise are known, wavelet image 
coefficients are modeled as Gaussian random variables [10]. Using a spatially adaptive wavelet image model, 
wavelet coefficient variances are estimated before an approximate minimum mean squared error estimation 
procedure is used [11]. In such methods, it is important to accurately estimate the signal variance from the noisy 
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signal. Nearly arbitrary shaped windows have been used [12] as well as directional windows for different oriented 
subbands [13]. In all cases, when signal and noise powers are known, an estimate of signal is obtained using 
relatively low complexity. 
 
More complicated methods often exploit multiple scale dependencies of the wavelet transform. By thresholding the 
products of wavelet coefficients between scales, edges may be extracted and noise reduced [14,15]. Using the 
evolution of wavelet coefficient magnitudes across scales and spatial clustering are other methods [16]. In another 
approach, the wavelet coefficients at the same spatial locations of two adjacent scales are represented as a vector, 
and the linear minimum mean square-error is applied to the vector [17]. The optimal wavelet is then determined 
from a library of wavelet bases.  
 
In contrast to previous work, we determined whether wavelet coefficients were noisy based on higher-order 
correlations. Higher-order correlations are an extension of the more familiar second-order, cross-correlation 
function, but have the advantage of being insensitive to noise of unknown spectral density under certain conditions. 
[18] In our approach, we applied a third-order correlation detection method to identify wavelet coefficients that 
contained mostly signal [19,20]. Because the higher than second-order moments of the Gaussian probability 
function are zero, a third-order correlation coefficient will not have a statistical contribution from Gaussian noise. 
This paper gives the theory of detection of wavelet coefficients using higher-order correlations in the presence of 
additive noise and reports on its applications. After briefly discussing higher-order correlations, we present the main 
characteristics of higher-order denoising followed by a theoretical analysis when used in conjunction with wavelet 
transforms. Then, we apply this method to denoise images with Gaussian noise and compare the results to the 
minimum error obtained with second-order statistics. 
 
 

2 HIGHER-ORDER CORRELATIONS 
 
The correlation between two functions has often been used as a measure of their similarity. The conventional 
correlation function is second-order and is a special case higher-order correlation [18]. Although higher-order 
correlations have been used for many years, their use has been limited. The nth-order autocorrelation of the signal 
f(x) is defined as  

f n(τ1, τ2 , . . . τ
n−1) ≡

N -1

Σ
k =0

f (x) f (τ1+x) f (τ2+x) . . . f (τn−1+x)
,
  

(1)

 
 

where the nth-order correlation is a function of n - 1 independent variables τn and N is the length of the signal. For n 

= 2, Eq. (1) becomes the second-order correlation of f(x) which is the familiar autocorrelation function.  

 

We primarily considered the third-order or triple correlation because it has the same advantages for our purpose and 
is easier to calculate than other higher-order correlations. The third-order correlation n = 3 of a one-dimensional 
function is a function of two variables. From Eq. (1) the third-order autocorrelation of f(x) is 

 

f 3(τ1, τ2) =
N - 1

Σ
x = 0

f (x) f (τ1+x) f (τ2+x)
 
,
    

(2)

 

 

where f3(τ1, τ2) is symmetric with respect to its variables τ1 and τ2.  
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The third-order correlation coefficient f3(0,0) can be found by sampling the triple correlation f3(τ1, τ2) at zero 

displacement where τ1 = τ2 = 0. From Eq. (2), the third-order correlation coefficient becomes 

f 3 (0, 0) =
N - 1

Σ
x = 0

f
3
(x)

,     
(3)

 

 

And shows that the third-order correlation coefficient f3(0, 0) of f(x) can be calculated directly as the sum of the 
cubes of f(x) from x = 0 - N - 1. 
 
For a zero-mean symmetric distribution, the third-order correlation coefficient is zero. [18] Because the Gaussian 
distribution is symmetric about its mean, the third-order correlation of a zero-mean Gaussian process is zero. 
 
 

3 HIGHER-ORDER SIGNAL DENOISING 
This section describes our method for denoising using third-order correlations. Denoising typically involves 

calculating the wavelet transform of a signal, thresholding the wavelet coefficients, and calculating the inverse 
wavelet transform. Most methods calculate the threshold based on an analysis of the wavelet coefficients as 
indicated in Fig. 1, where f(x) is the noise-free signal, n(x) is the noise, s(x) is the noisy signal, bjk are the wavelet 

coefficients,  j is the level of the transform, and k is the translation parameter. In many cases, the energy of the 
wavelet coefficients is used as a basis for thresholding or otherwise modifying their values, but there are other 

criteria that may be used [21]. After the inverse wavelet transform, the denoised signal f̂ (x) should ideally be equal 
to the noise-free signal f(x). 
 
Our denoising approach was based on third-order correlations to identify wavelet coefficients comprised of mostly 
signal. We thought of wavelet coefficients as correlations between a noisy signal and wavelets at different scales and 
translations. The noise considered was zero-mean of unknown spectral density.  
  

We first calculated the second-order cross-correlation functions between the noisy input signal and each scaled and 
translated wavelet and labeled the resulting functions as bjk(τ). We then calculated the third-order autocorrelation 

coefficients from bjk(τ). Using Eq. (3), the third-order autocorrelation coefficients of the second-order cross-

correlations between wavelets and signal were described as  

 

( )∑

−

=
=

12

1

3
3 )()0,0(

jm

jkjk bb
τ

τ ,    (4) 

 

where mj is the length of the wavelet at the jth scale, and the summation is performed only over the portion of the 

signal where the wavelet is supported. The block diagram of our approach is shown in Fig. 2. Because the wavelet 
coefficients bjk represent single values in each of the functions bjk(τ), the wavelet coefficients cannot be used to 

calculate the third-order correlation coefficients. To calculate the function bjk(τ), the basis functions wjk(τ) must be 

available. The third-order correlation coefficients b3jk(0,0) are then thresholded to select which wavelet coefficients 

are to be used in reconstructing the signal. 
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We considered the result of the second-order wavelet-signal cross-correlation as consisting of two parts. One part 
was the correlation between the input signal and the wavelet, and the second part was the correlation between the 
noise and the wavelet. The second-order correlation result was written as 

 

)()()( τττ jkjkjk nbfbb += ,     (5) 

 

where fbjk(τ) and nbjk(τ) represented the noise-free signal-wavelet correlation and the noise-wavelet correlation 

respectively. Substituting Eq. (5) into Eq. (4) and rearranging, the expression for the third-order autocorrelation 
coefficient can be written as [22], 
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(6) 

 

If we assume zero-mean noise, the second term in Eq. (6) will statistically approach zero as the length of the signal 
increases. If the noise has a symmetric distribution, then the last term will also approach zero. The third term is 
related to the product of the signal and the noise power. It can be minimized if the mean of the signal is set to zero 
over the region of correlation. The first term, the third-order correlation, is not due to noise and can be separated 
from the remaining terms using a threshold T as 

 

⎩
⎨
⎧ ≥

=
otherwise

Tbifb
b jkjk

jk 0

)0,0(ˆ 3
.   (7) 

 

A third-order detection algorithm is used in this way to select wavelet coefficients that contain mostly signal. 

 
 

4 ANALYSIS 
 
The last term in Eq. (6) is the third-order correlation coefficient of the noise-wavelet correlation function. Each 
value of nbjk(τ) can be seen as a sum of products, where the products are between the wavelet coefficients and 

samples of the noise n(τ). Considering uncorrelated identically distributed noise, the samples of nbjk(τ) are random 

variables whose probability density functions (pdfs) can be written as 
 
 

( ) ∑
−

=
=

1

0

)(
jm

i
jk iXcnb τ ,      (8) 
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where the cj(i)’s are the coefficients of the wavelet at the jth scale and X is a random variable with a distribution of 

the noise signal. If X is zero-mean Gaussian distributed with variance σx
2, then the expression in Eq. (8) will be 

normally distributed with mean and variance µnb = 0 and ∑
−

=
=

1

0

222 )(
jm

i
jxnb icσσ .  

 
To complete the contribution of the noise-only term to the third-order correlation coefficient in Eq. (6), the samples 
in Eq. (8) must be cubed and summed. Cubing the samples in Eq. (8) produces another random variable. When a 
random variable is obtained from another random variable by a strictly increasing or decreasing deterministic 
function such as Z = H(Y), then Z will have the density function [11] pZ(z) = pY(y)|dy/dz|. With the pdf of Eq. (8) 

described as pY(y) and z = y3, the pdf of Z can be written as 

 

2
3/1

3/13
)(exp

23

1
)(

σπσ
z

z
zpn −= ,    (9) 

 
where  pn(z) is not defined at z = 0. 

 
The last term in Eq. (6) is a summation of 2mj – 1 random variables. Its pdf can therefore be written as the 

convolution of the densities as 
 
 

p2mi - 1
(z) = pn(z) * pn (z) * pn (z) . . .,  2mi - 1 times.    (10) 

 
 
A plot of p2mi - 1

(z) is shown in Fig. 3 for values of mi = 2, 4, 8, and 16. The results show that for small values of 

mi, most values of the noise are shifted to zero. As mi increases, the effect is reduced and the noise appears more 

Gaussian. 
 

5 EXPERIMENT 
 
We initially compared our method to the minimum mean-squared-error MSE using second-order statistics. We used 
three levels of the wavelet transform and, for second-order (conventional) denoising, found the minimum MSE 
possible for each SNR. The MSE was determined by varying a soft threshold value until the minimum MSE was 
found for each SNR. The same procedure was used for third-order denoising, but a hard threshold was used. A 
length 256 test signal is shown in Fig. 4(a) and the minimum MSE obtained with both second- and third-order 
processing is shown in Fig. 4(b) for mi = 6 and Fig. 4(c) for mi = 16. For all SNRs, the third-order result produced a 

lower MSE than the second-order case.  
 
We used automatic thresholding of the third-order correlation coefficients by keeping constant the number of false 
rejections. This notion can be seen as a false discovery rate [24] (FDR) and can be written as 
 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎟
⎟

⎠

⎞

⎜
⎜
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⎛ − jsN

N
EFDR

2
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1 ,      (11) 
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where Ns is the length of the input signal, N1 is the number of false discoveries, and E{ } represents the expected 

value. The FDR can be determined by wavelet coefficients above a threshold. Using the monotonicity of the noise 
distribution p2mi - 1

(z), the FDR can be written as 

 

])(1[2 12∫
∞−

−−=
T

j

z

m dzzpFDR ,    (12) 

where T = zT is the threshold. The value of FDR as a function of zT for different values of mi was computed 

numerically and shown in Fig. 5. From this data, a threshold can be chosen to minimize the number of wavelet 
coefficients that have noisy third-order correlation coefficients. 
 
We used an image of a damaged space shuttle tile as shown in Fig. 6 in our experiments. We estimated the noise 
statistics from the first level of the wavelet transform and choose a threshold value for a FDR = 0.1, and used  
Daubechies orthogonal minimum-phase wavelets in our experiments. In addition, we found that by denoising the 
rows and columns independently then averaging the results gave slightly improved results when compared to 
denoising rows followed by denoising columns.  The results for mi = 4,6,8, and 16 are shown in Fig. 7. The results 

show that the shortest wavelets gave the best performance. In addition, the results were compared to a conventional 
(universal) second-order denoising with mi = 4. In all cases the third-order results gave better performance than the 

second order results. 
 
 

6 CONCLUSION 

A higher-order, correlation-based method was used for signal denoising. In this approach, a wavelet coefficient was 
classified as containing mostly noise or mostly signal based on higher-order statistics.  This method should work 
best for noise distributions that are symmetric, because the third-order correlation coefficient of these distributions 
will be statistically zero. The method uses a hard threshold to eliminate noisy wavelet coefficients, but modifications 
to the approach to estimate the amount of noise in the third-order domain could possibly be used to improve results. 
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Figure 1 Conventional denoising approach. 
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Figure 2 Third-order denoising approach. 
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Figure 3 Probability density functions of p2mj - 1

(z) for wavelets of length 2, 4, 8, and 16. 
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Figure 4 Comparison of minimum MSE as a function of SNR using second- and third order denoisng with 3 levels for a length 
256 signal (a) sample signal (b) results using m1 = 6 (c) results using m1 = 16. 
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Figure 5 False discovery rate as a function of threshold for different length wavelets. 

 

  
Figure 6 Image from space shuttle time used in experiments. 
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Figure 7 Comparison of MSE of 3rd-order and 2nd-order algorithms using image in Fig. 6. 
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