

High Fidelity Adaptive Cyber
Emulation

by

Samir Mammadov

Bachelor of Science

Computer Science & Software Engineering

Florida Institute of Technology

2014

A thesis submitted to the School of Computing

at

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Information Assurance & Cybersecurity

Melbourne, Florida

May, 2017

We the undersigned committee hereby approve the attached

thesis, ñHigh Fidelity Adaptive Cyber Emulationò

by Samir Mammadov

Dr. Marco Carvalho

Associate Professor, Executive Director, Dean

School of Computing

Dr. Thomas Eskridge

Associate Professor

School of Computing

Dr. Adrian Peter

Associate Professor

College of Engineering

iii

Abstract

Title: High Fidelity Adaptive Cyber Emulation

Author: Samir Mammadov

Advisor: Dr. Marco Carvalho, Ph. D.

While looking for a high-level adaptive traffic generation tool, we came

to realize that no such tool exists that can be used for rapid development

while being platform agnostic. Having reviewed a wide array of tools to either

implement user models or simulate traffic, we were unable to find a tool with

the right capabilities while maintaining complexity, portability and

extensibility. To overcome these issues, we introduce a new adaptive user-

modelling framework for the specific use case of cyber activity emulation. Our

framework supports the creation of high-level user models that can react to

changes in their environments and vary the way they emulate cyber activity

based on those changes. We review the problems with the current tools and

show how our behaviour tree based solution can be used to achieve our

goals in an illustrative scenario showcasing the frameworkôs adaptability ï a

key feature most other tools are lacking. Furthermore, we show that our

framework is also extensible, portable, and more conducive to rapid

development than other user modelling tools currently available.

iv

Table of Contents

Abstract ... iii

Chapter 1 Introduction .. 1

Chapter 2 Literature Review ... 5

2.1 Simulation vs. Emulation ... 6

2.2 Packet Crafting ... 7

2.3 Low-level Simulation Tools ... 7

2.4 High-level Cognitive Modelling and Emulation Tools 9

2.5 Hybrid Tools .. 10

2.6 Proprietary Tools ... 11

Chapter 3 Concept Implementation .. 13

3.1 Capability .. 13

3.1.1 Adaptability ... 19

3.2 Portability .. 20

3.3 Extensibility and Usability .. 22

3.4 Yoshka Dependencies .. 26

Chapter 4 Illustrative Scenario ... 28

4.1 Scenario Design .. 28

v

4.2 Scenario Tools & Implementation ... 35

4.3 Scenario Evaluation .. 37

Chapter 5 Informal Qualitative Evaluation .. 45

5.1 Qualitative Scenario Design .. 45

5.2 Questionnaire Results ... 48

5.3 Results Analysis .. 50

5.3 Comparison of Mission Implementation .. 52

5.3.1 Implementation in Yoshka... 53

5.3.2 Implementation in Ostinato ... 56

5.3.3 Implementation in Soar ... 58

Chapter 6 Recommendations ... 62

Chapter 7 Conclusion ... 64

Bibliography ... 65

Appendix A ... 72

Appendix B ... 75

Appendix C ... 76

Appendix D ... 78

vi

List of Figures

Figure 3.1 A block diagram showing the informatoin flow in the framework.

 ... 15

Figure 3.2 An example structure of a CompositeNode using parallelism with

the random order flag flipped. .. 18

Figure 3.3 A screenshot of the Yoshka front end web app. 23

Figure 3.4 A screenshot showing the visualization to be used in the Yoshka

web GUI. .. 25

Figure 4.1 A diagram representing the sample enterprise network we have

designed for this scenario. ... 30

Figure 4.2 A picture of a sample behaviour YAML file................................ 31

Figure 4.3 An example behaviour for a software developer in the software

development company. .. 34

Figure 4.4 A screenshot of the scenario running being visualized in Kibana.

 ... 37

Figure 4.5 A donut graph showing the proportion of all Tasks executed on

the network. .. 38

Figure 4.6 A donut graph showing the proportion of all Tasks executed on

the network after the attack. ... 39

Figure 4.7 A Kibana dashboard showing the state of the network after the

mail server is disabled. ... 40

https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159491
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159491
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159492
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159492
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159493
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159494
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159494
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159497
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159497
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159498
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159498
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159499
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159499
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159500
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159500
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159501
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159501

vii

Figure 4.8 The behaviour we designed to showcase adaptability. 41

Figure 4.9 A tree diagram showing the execution path of the Adaptable

node after the change threshold is triggered. ... 42

Figure 4.10 A tree diagram showing the execution path of the Adaptable

node prior to triggering the change threshold. .. 42

 Figure 4.11 Framework log files simplified and colourized to showcase

adaptability. .. 44

Figure 5.1 A tree diagram showing the example behaviour to be

implemented by the volunteer using each tool. .. 46

Figure 5.2 A snippet of code showcasing the sample Yoshka Task that was

provided to the volunteer. ... 54

Figure 5.3 Ostinato graphical user interface. .. 56

Figure 5.4 A screenshot of the Soar graphical user interface. 58

Figure 5.5 A snippet of Soar code showing an example Hello World rule. . 59

Figure 5.6 A screenshot of the Soar Visual Debugger user interface. 60

https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159503
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159503
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159504
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159504
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159506
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159506
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159507
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159507
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159508
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159509
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159510
https://d.docs.live.net/3b3cbe8e3ac48c89/Documents/thesis.docx#_Toc481159511

viii

List of Tables

Table 2.1 A table comparing the types and supported platforms of related

works. ... 12

Table 5.1 A table comparing the average times of volunteers for the mission

implementation using different tools. .. 48

Table 5.2 A table showing the average difficulty scores given for each tool.

 ... 49

Table 5.3 A table comparing the features and capabilities of Yoshka,

Ostinato and Soar. ... 51

ix

!ŎƪƴƻǿƭŜŘƎŜƳŜƴǘǎ

I would like to express my immense gratitude to my advisor, Dr. Marco

Carvalho, for giving me a chance in times of difficulty and inspiring me to

push on in the face of adversity. I would not be at this point without his

support.

My colleagues Evan Stoner and Dhanish Mehta have been instrumental in

the creation of this framework. I am proud to have had the chance to work

with them and bring this project to fruition.

I would also like to thank many of my friends who have helped me and kept

me sane during many late nights working on this thesis. Jigarkumar Rathod

and Nima Aghli have been my companions on this journey. I am glad to have

met and worked with them. Armando Rollins, Heather Lemieux and Tiziano

Bernard have all helped me transform this thesis into a much more readable

and understandable document.

Thank you.

x

This thesis is dedicated to my parents,

Aziz Mammadov and Svetlana Mammadova.

I would not be who and where I am today without their continual love and

support.

<3

1

Chapter 1

Introduction

There are a lot of difficulties when it comes to cybersecurity

experimentation and the creation of useful, reproducible and globally

shareable results [1]. One such difficulty stems from the pervasively

expanding field of computer technology and automation into other fields such

as, "energy, transportation, manufacturing, finance, healthcare, economics,

human behaviour, and many others" [2]. When it comes to cybersecurity

experimentation, two important factors are creating a realistic and lifelike

environment and being able to easily create, test and compare user

behaviours in the environment. In the past, there have been attempts (e.g.

LARIAT [3], DeterLab [4], etc.) at creating a solution for these problems, yet

there is still no widely available, accessible and flexible tool for all interested

parties. Furthermore, there is currently no tool available to easily create

adaptable user-models. By adaptability it is intended that user models can

respond to certain conditions in their environment and change the course of

their default behaviour. Some organizations have attempted to remedy these

problems with specialized software on cyber ranges [32]. A cyber range is a

virtualized environment for the training of individuals in the use of cyber tools

and activities. However, these cyber ranges are often in a closed ecosystem

2

which makes it hard or impossible to use on other platforms [5], [4], [6]. In

this paper, we will be looking at creating a tool that can help create and

execute adaptive models of users' behaviours with a specific use case in non-

synthetic network traffic generation.

As an example of one these cyber ranges, researchers at the Florida

Institute of Technology have created a miniature version called Virtual

Infrastructure for Network Emulation (VINE). VINE is a cloud based testbed

that allows for the deployment of a variety of operating system images which

can interact with each other over a virtual network. We use VINE to run a

variety of projects and experiments where we can test the effectiveness of a

certain cybersecurity tool or technique (e.g. moving target defence) [7].

However, to be able to realistically test some of these tools we need to ensure

that our testing environment reflects a realistic network topology and non-

synthetic background traffic. For this purpose, we have created an adaptive,

behaviour tree-based framework called Yoshka. The main focus of this

framework is on the capability of adaptability, while maintaining complexity,

extensibility, portability and ease of use.

Since non-synthetic(realistic) background traffic is an important aspect

of creating a scientifically sound experiment [2], [8], [9], [10], [33], [34] we

wanted to make sure that we considered most kinds of existing tools to

ensure we have one that reflects our exact requirements. Our requirements

include:

3

¶ creating and controlling high level concepts to execute a cyber

mission

¶ rapidly creating an easily manageable and reusable user model

¶ having the user model be able to adapt and respond to its

environment

¶ having the tool be platform agnostic

¶ having the tool be easily extensible

During our research, we came to recognize that there are basically

three types of tools available to researchers in our situation: the first type is

a simple (usually low-level) traffic capture tool with replayability and

occasional packet crafting support; the second type is a much more complex

and comprehensive tool often used to model human cognition and behaviour

and the third type is a hybrid of the first two types. None of these solutions

matched all our requirements thus having us finally decide to create our own

solution.

The reason we decided to come up with our own solution instead of

using an already existing tool can be summarized into four factors:

1. The already existing solutions were too low-level. Half of the tools

[11], [12], [13] we found and reviewed often only supported very simple

features and possibilities that did not fit our expectations. They only

4

allowed for the control of low-level data such as packets or flows

whereas we were looking for something more abstract and capable.

2. The already existing solutions were too complex and did not relate to

traffic generation. Several tools [14], [38] we found had the exact

opposite problem; they were designed to model human cognition and

behaviour and inherently had more complexity. We were looking for

something as powerful (or close to it), yet not as complex. These tools

had nothing to do with traffic generation and did not allow for the agility

and speed we were looking for.

3. The already existing solutions were platform restricted. Some of the

other tools [4], [15], [3], [13], [16], [36] we found that were created for

cybersecurity experimentation fit our needs in terms of features, but

were unfortunately restricted to either a specific platform or provider.

4. None of the traffic generation tools supported adaptability ï being able

to dynamically change traffic generation parameters based on

changes in the environment. All the tools [11], [12], [13] that related to

traffic generation were too low level to be able to support adaptability.

5

Chapter 2

Literature Review

During our research, we realized that there are three main types of

tools that can help create user models for the purposes of cyber activity

generation. The first type is a basic tool that simply generates a specific type

of traffic for a specific type of domain [9], [17], [10], [18]. Some varieties of

this type of tool [11], [12] include, but are not limited to, packet capture and

replay, traffic simulation, traffic emulation or some combination of these. The

stages of packet crafting are further discussed in section 2.2. The second

type of tool is a much more advanced framework built for cognitive modelling

and refers to the theory and structure behind the human mind. The third type

is simply some sort of hybrid of the first two types. We also found a number

of privately owned solutions that we will mention, but, due to their closed

source policy, we cannot perform a proper analysis of their inner workings [5]

[6]. We compare the first two types of tools in more detail in section 2.1.

We found over 20 tools that fall into one of these two categories or

somewhere in between. The first three that we review fall into the first

category of simple traffic generator/simulator type tools. They are tcpreplay

a packet traffic capture tool [13], Harpoon a netflow-level traffic generator [11]

and Ostinato a network traffic generator and analyzer [12]. The second two

6

are: Soar [14] and DASH [4]. The last two can be considered a hybrid

combination of the two types where a simple traffic generator tool is coupled

with a user or application modelling feature. These tools are Swing [16] and

RENETO [15].

2.1 Simulation vs. Emulation

When exploring these tools, it is important to distinguish between

simulators and emulators. A simulator is a tool that, given an input, uses

mathematical modelling or software techniques to generate an expected

output based on what the model is supposed to be simulating. An emulator,

on the other hand, is a tool that actually performs the actions in between the

input and output stages of the process that yield in the desired output. This

is important because it preserves the intricacies and details of the actual

process going from input to output. In the case of simulators certain side

effects of this process are often overlooked thus inherently creating non-

authentic synthetic outputs [19], [20]. For example, if one wanted to generate

traffic, representative of a typical office worker browsing the internet, all the

packets would need to be carefully crafted to simulate the data being sent

between client and server. More importantly one would have to manage all

the timings between client and server connections and account for any

possible mistakes made by the office worker, the connection or the server.

All of this is incredibly hard to do, let alone come up with the right parameters

to make it realistic. This is a concern for us since we are trying to achieve

7

realistic background traffic on a network. Therefore, we need Yoshka to be

an emulator rather than a simulator.

2.2 Packet Crafting

There are generally four main stages in the packet crafting process:

assembly, editing, play and decoding. Assembly refers to the creation of a

packet, editing means changing the content of the packet, play/replay means

actually sending the packets on the wire and decoding means analyzing and

interpreting the packet contents after it has been sent and received [21].

There are several tools online that specialize in each of these stages such

as hping3, netdude, tcpreplay, Wireshark, etc.

2.3 Low-level Simulation Tools

Tcpreplay [13] is a collection of GPLv3 licensed tools that run on UNIX

and Windows (through Cygwin) and allow for use of captured traffic in the

libpcap format. Users can differentiate traffic between client and server,

modify network stack headers and replay the captured traffic through any

number of devices. With the help of this tool network administrators can

probe firewalls on the perimeter for any misconfigured rules and fix other

network misconfiguration issues. This tool specifically focuses on the packet

play stage of packet crafting meaning that it uses previously captured traffic

that can be sent at the same rate or any other user defined rate. The main

disadvantages of tcpreplay are the fact that the user is always limited to

8

previously captured traffic and going through the complicated process of

designing and creating oneôs own packets. Re-using previously captured

traffic may not always be the best option since different scenarios and

network topologies will often yield different traffic patterns, whereas

designing and creating packet streams may be what we want, unfortunately,

there is no easy way of creating a large number and variety of these.

Harpoon [11] is a netflow-level tool that enables traffic generation. It

can use data from previously captured netflows to analyse and create

statistically similar models to replicate the original traffic in both temporal and

spatial aspects. This tool is typically used to run background traffic for

application and protocol testing. When analyzing data from previously

captured netflows, Harpoon can differentiate between inter-connection time,

source and destination IP ranges, file size and number of active sessions to

create the statistical models for TCP sessions.

Ostinato [12] is relatively new tool in the packet crafting trade releasing

their first stable version in 2010. Most tools focus on only one of these stages,

but Ostinato aims to be a comprehensive tool that can cover them all. The

first stage of packet assembly refers to the actual creation of the packets that

can be configured with any protocol, flags or other options. After the packets

are created one might want to edit them or edit other previously captured

traffic. Ostinato can change the value of any field of any protocol. The third

stage is actually sending the created or captured packets finally followed by

9

packet decoding. Although this tool has great support for a variety of

protocols and platforms with powerful features at all stages of packet crafting,

unfortunately it is too low-level for our use case. It is impractical to use this

framework for the design and creation of adaptable user models.

2.4 High-level Cognitive Modelling and Emulation Tools

Soar [14] is a widely-used tool used to simulate human cognition and

behaviour. This appeared promising, but we were also aware of the steep

learning curve due to the complexity brought about with the rich feature-set.

This architecture has modules to support a range of problem solving

methods, memory, knowledge and learning about all aspects of tasks and

their performance. Using this tool would perhaps yield the most human-like

traffic down to specific details such as fatigue and human-like memory. We

realized that this level of detail is only useful to us, for background traffic

simulations, if it can be achieved in a reasonable timeframe.

DASH [22], [4], [23], [37] is a tool that was built by the Deter Project to

help them create, "predictive modelling of human behaviour supporting

definition of mental models". This tool seemed like the perfect fit, but upon

further investigation we realized that there is no publicly available source

code because it only runs and works on their DeterLab cyber range. DASH

is based on an agent platform where computers mediate group decision-

making. The agents model behaviours using a dual-process cognitive

10

architecture that represent rational and instinctive behaviours. Using the

combination of these modules they can simulate fatigue, cognitive load and

time pressure as well as human biases.

2.5 Hybrid Tools

Vishwanath & Vahdat's work on Swing [16] and Geyer et al's work on

RENETO [15] can be considered as a hybrid tool of a low-level simulator and

a high-level user modelling framework. Swing presents a, "closed-loop,

network responsive traffic generator"[16] that builds models of application

specific traffic based on captured packets and generates statistically similar

live traffic. It attempts to achieve realism by taking into account packet inter-

arrival rate, burstiness, size distribution, arrival rate and destination

distribution. By analyzing these properties, the authors can create models of

specific applications' behaviours. The latter largely presents a similar solution

to the same problem, but with a different implementation and on a different

platform. RENETO is based on the OMNet++ network simulation framework

which is also a packet level tool like Swing. To replicate realism RENETO

focuses on IP addresses, ports, timestamps and protocols. The model is then

created based on the empirical cumulative distribution function of the

parameters that are matched with specific applications. The parameters in

these models are static and therefore "not well suited for live capture"[15].

11

2.6 Proprietary Tools

During our research, we also came across several privately-owned

tools that seemed to fit our requirements based on the descriptions.

Unfortunately, due to their closed source nature, no proper evaluation of

these tools was possible. The tools are: Solarwinds' WAN Killer - a simplistic

network traffic generator, Ixia's BreakingPoint [5] - an all-in-one application

and security testing platform and Spirent's Avalance NEXT [6] - a tool to

"generate realistic enterprise-level and carrier-grade security application

traffic for load and functional testing"[6].

 In table 2.1 we can quickly see all the tools that we looked at

comparing their types and the platforms that they support. In the type column,

US indicates user simulation, UE indicates user emulation and H indicates

hybrid. In the platform column, ñAnyò indicates that the tool can be used on

any of the three major platforms (Windows, Linux, Mac) either directly (native

executable) or indirectly (running in an emulator such as Cygwin or the Linux

subsystem on Windows 10). In certain cases, some of the tools are restricted

to a specific closed or semi-closed platform like LARIAT or DeterLab.

12

Table 2.1 A table comparing the types and supported platforms of related works.

 Name Type Platform

1 Tcpreplay US Any

2 Hping US Any

3 Ostinato US Any

4 Seagull US Any

5 Packets US Any

6 Harpoon US Any

7 Pktgen US Any

8 Trafgen US Any

9 Poisson traffic generator US Any

10 Surge US Any

11 Mausezahn US Any

12 Soar UE Any

13 DASH UE DeterLab

14 ACT-R UE Any

15 Icarus UE Any

16 GOSMR UE LARIAT

17 Swing H ModelNet

18 RENETO H OMNet++

19 Netspec UE Any

20 AvalancheNEXT UE Any

21 Ixia BreakingPoint US Any

22 Solarwinds US Any

23 Skaion H Any

13

Chapter 3

Concept Implementation

Based on our review of existing tools, we propose a new framework

that aims to overcome the issues we have encountered while meeting the

requirements we outlined. In this section, we explain our choices and design

decisions as they relate to the issues of capability, adaptability, portability,

extensibility and usability.

3.1 Capability

To achieve the capabilities of adaptability and responsiveness in our

user models we, at first, decided to go with a behaviour tree approach. A

behaviour tree is a directed acyclic graph mainly used in the video game

industry to control non-playable characters (NPCs) [24], [25], [26]. This can

be considered as a primitive form of AI that lays out a set of possible steps

that the agent can make based on the outcomes of previous steps. We

decided to approach this problem from a more abstract level than packets or

flows due to our goal of balancing usability and complexity [1], [27]. To

simplify this idea even further we decided to combine the concepts of

behaviour trees with binary trees to restrict the outcome of each node to only

two possible states: success and failure. There are two types of nodes in our

framework: TaskNode and CompositeNode which both extend a general

14

Node class. A TaskNode represents a single atomic action that an agent can

make. A CompositeNode is more complex and represents a collection of

TaskNodes (represented as a string list argument) with four extra features to

introduce some of the key capabilities of our framework. The four features

are adaptability, distributions, a success criterion and parallelism which will

be discussed later in this chapter. These two Node types can be used as

building blocks to create a binary tree like graph that is easy to understand

and follow, yet has the potential to model realistic human behaviour. By

abstracting any task or set of tasks into a separate Node, we can rapidly

create models of users' behaviours without having to worry about the

individual packets. Another advantage of this architecture is that behaviour

trees are highly reusable and enable composability. Given any behaviour

tree, we can reuse a subtree of that original tree in any other user model for

easy and rapid composition of behaviours.

The main logic controller of our framework is called the Engine. It is

responsible for handling control flow, timing, dynamic variable initialization,

thread initialization and more. By default, the Engine uses seconds to

manage all timings, but this can be adjusted to minutes or hours through the

Engine configuration file. Yoshka supports the use of dynamic variables

which means that the output of one Task can be used as the input of another.

Since these variables are determined and allocated at runtime, the Engine

creates trees with placeholder values that are replaced during behaviour

15

initialization and before the execution of the individual TaskNode. The five

most important classes in our framework can be seen in the block diagram

of figure 3.1. This diagram represents the information flow of a behaviour file

and its parameters.

Both Task and Composite nodes can be executed one or more times

and keep track of their status. Based on this status (success or failure) the

Engine will direct the execution down the respective behaviour path. A

behaviour is what we call the general set of actions that an agent can make.

This behaviour is a directed, acyclic graph written as a YAML file that is used

as one of the required inputs for the framework. YAML [28] is a type of human

readable file format used for data serialization. The main reason we decided

to use YAML is its highly readable hierarchical design and clean key to value

mapping implementation. Given such a behaviour file and a set of arguments,

the file is verified and processed, the Engine is configured and the main

execution loop begins. The arguments are discussed in further detail in

section 3.2. For example, given a YAML behaviour file as an input, the main

entry class Yoshka handles the arguments and then calls the InputHandler

class passing on the reference to the behaviour file. This InputHanlder class

determines what type of file format is used and then calls the appropriate

verification class. What this means is that the framework is designed in a way

Yoshka InputHandler YamlVerifier YamlReader Engine

Figure 3.1 A block diagram showing the informatoin flow in the framework.

16

to be extensible and support other file formats and inputs which is further

discussed in section 3.3.

To ensure ease of use of our framework we decided to include a

YamlVerifier class to check for syntactic and logical errors when it comes to

constructing behaviours. For example, some of the internal constraints on

our behaviours specify that every Node should have a unique name, zero or

two children, the correct number and type of arguments of Task specified,

etc. In case there is a mistake in the behaviour, a descriptive error message

is logged letting the user know what part is incorrect. Given the behaviour is

correct, it then gets passed on to the YamlReader class which builds an

internal model of this behaviour. Internally this model is represented as a

hashmap using the TaskNode and CompositeNode classes. The reason we

use a hashmap and not a tree is because our behaviours support having

multiple parent nodes for reusability. Having finished building this data

structure, it finally gets passed on to the Engine that begins the execution.

The Engine also makes sure to keep track of Task data such as duration,

status and the use of any dynamic variables. After Task execution, the time

of completion is measured and compared to the intended duration of that

Task. If it completed earlier than it should have, it will wait for the difference.

It is also possible to specify a range of values for the duration having the

Engine randomly pick a value in that range.

17

When the Engine is executing these nodes, it checks whether the

current Task happens to be an instance of CompositeNode. In this case the

control flow is slightly altered to ensure that all the Tasks that are part of the

collection are run according to the specified number of threads, success

criterion and distribution as described further on. The Engine also keeps a

watch, with the help of the WatchService class, on the behaviour file and

Engine configuration file as either can be edited live during execution. In case

a file is changed, the Engine discards the old information and updates to the

new changes.

When using the CompositeNode in behaviours, the user has two

options: using the distribution and adaptability features together or the

success criterion and parallelism features together. These features are

specified by the arguments of the CompositeNode and cannot, currently, all

be used at the same time.

The success criterion feature is a pair of integers that are used to

determine how the CompositeNode is evaluated as one whole Node. The

first integer (min) represents the minimum number of Tasks that can pass for

the CompositeNode to succeed and the second integer (max) represents the

maximum number of Tasks that can pass for it to succeed. For example, if

the user wants to create a CompositeNode with an AND condition for the

individual sub-Tasks then s/he would specify both integers to be the same

number as there are Tasks contained within the CompositeNode. In general,

18

both integers must be positive and no larger than the total number of Tasks

in the CompositeNode. For another example, if the user wanted the

CompositeNode to be evaluated as an XOR (returns success if and only if

there is only one successful Task in the collection) then the user specifies the

maximum value as 1 and the min value as 0. The Engine automatically

figures out this success criterion to return the correct result.

Parallelism is determined by the number of threads argument of the

CompositeNode. This argument must be a positive integer that controls the

number of threads the thread pool is allowed to instantiate when executing

Figure 3.2 An example structure of a CompositeNode using parallelism with the
random order flag flipped.

19

the Tasks of the CompositeNode. This thread pool uses the ThreadMonitor

class to keep track of all the threads and log any key events.

3.1.1 Adaptability

The key differentiating part of our cyber emulation framework is its

ability to adapt to the environment as the environment evolves and changes.

We realize this feature by implementing a simplistic memory model along

with our distribution feature. The distribution feature enables a non-

deterministic approach to the execution of Tasks. For example, the user can

specify a type of distribution (e.g. uniform, Gaussian, Poisson) in the

arguments of a CompositeNode that enforces the selection policy for that

Node. The selection policy determines which Task is to be run during the next

execution. Given a certain distribution, the selection policy is determined by

a random sampling of the selected distribution mapped to all possible Tasks.

For example, if a Poisson distribution is selected and the CompositeNode

contains three possible Tasks, then depending on the sample value, the

corresponding Task will be selected for execution. The Engine keeps track

of how many times a particular Task of the CompositeNode fails (what we

call the change threshold) and how many subsequent actions have passed

since then (what we call forgetfulness). For example, if a CompositeNode

contains three TaskNodes that an agent can take and one of them fails more

times than the change threshold value, then the distribution based selection

20

policy is overridden and a subsequent TaskNode is selected for execution.

To prevent that TaskNode from never running again we also decided to

implement forgetfulness, which is simply modelled as a counter of actions

since the last change threshold trigger. We deem this as an important part of

our framework primarily because we can study the effectiveness of a certain

attack on a network with responsive user-agent behaviours.

The user can also reuse variables between Tasks or use the output of

one Task as the input of another. This feature works in tangent with the

behaviour tree data structure as the Tasks can become dynamic and respond

to changes in the environment they are running in. Our framework makes

sure that all nodes in the behaviour tree are context aware in a semi-

automatic manner. This means that any Task can utilize a global register to

share information with other Tasks in the same behaviour. This works

automatically based on manually predetermined keys thus making the

process semi-automated.

3.2 Portability

The Yoshka framework is packaged as a Java Archive (.jar), so that it

is portable, and requires four mandatory arguments and has the option for

five additional arguments. The four mandatory arguments are: frequency (-

f), absolute path to the logger configuration file (-l), absolute path to the

Engine configuration file (-c) and the absolute path to the behaviour file(s) (-

21

b). Frequency must be a positive integer that determines how many times the

Engine should run the specified behaviour file(s). In case this integer is zero,

the behaviour(s) will run forever. The logger configuration file is a requirement

imposed by the log4j library used inside the framework. The Engine

configuration file lists all the possible configurable parameters used in the

Engine, such as: maximum and minimum numbers of threads, time scale,

change threshold and forgetfulness of the memory model, etc. Finally, the

behaviour file path specifies either the individual behaviour file or a directory

of multiple behaviour files to be executed. These multiple behaviour files can

be linked and reference one another thus allowing for modular and extensible

behaviour design. In the future, we hope to create the capability for Yoshka

to internally agglomerate these behaviours files into one large model.

The five optional arguments are seed (-s), verify (-vf), generate (-g),

input (-i) and package (-p). ñSeedò allows the user to input a value to be used

as the seed for all the random number generation in the framework to ensure

repeatable results. The ñverifyò option lets the user verify the correctness of

their behaviours in terms of syntax and logic without having to also run them.

The last three options provided to the user are tools that must be used in

conjunction and allow the user to create custom Tasks more easily and

quickly. The ñgenerateò option enables the generation of source files to be

finalized by the user, the "inputò option describes the necessary and optional

22

components of the Tasks to be generated and the ñpackageò option specifies

the root package name for these Tasks.

3.3 Extensibility and Usability

The Task is an abstract class in our Java-based framework that can

be used to implement custom actions. We designed the Engine in such a way

that the user can use the framework with a set of their own custom Tasks to

achieve any sort of functionality supported by Java programming. For

example, we created a set of FTP, Web, SQL and SMTP APIs to help us

represent users generating traffic on a network. We used these APIs to

create a set of specific traffic classes extending the Task class. We have also

packaged more generic Tasks into Yoshka to allow the user to emulate offline

behaviour as well. These Tasks include file manipulation and executing

arbitrary commands in the Linux shell. Thus, any action that can be done with

a shell command can be emulated by our framework. Since any class can

extend this Task object, our framework can represent any type of behaviour

programmable in Java. The only method the user has to implement in this

class, when creating custom Tasks, is ñrun()ò. This is the main method used

to determine what the Task is supposed to do when called by the Engine for

execution. As mentioned previously, we chose to use Java to overcome the

main limitation of a lot of other frameworks ï portability.

23

Yoshka also supports the automatic generation of these Task source

files through the -g, -i and -p options to maintain ease of use. For example, if

the user runs the framework with the options ñ-gp myTasks -i

/home/tasks.ymlò, then Yoshka will create however many Tasks were

specified in the ñtasks.ymlò file in a new package called ñmyTasksò. All of

these Tasks would already have the correct location and general skeleton

generated for the user, leaving them only to implement the aforementioned

ñrun()ò method.

As mentioned earlier, we have an InputHandler class to determine the

file format of behaviour file input to the framework. This is done in order to

support extensibility for other file formats in the future. The class is designed

in a way that given the format of the behaviour file is not YAML, the user can

either write code to convert the new format into YAML and reuse the Verifier

Figure 3.3 A screenshot of the Yoshka front end web app.

24

and Reader classes or simply write new Verifier and Reader classes for the

new format.

The process of user model creation starts with a web based user

interface. The UI is composed of two panes that are located side by side as

seen in figure 3.3. The first pane contains a list of possible Tasks (sorted by

type), templates and previously created behaviours. The second pane

contains a simple list based visualization of the behaviour tree. We have also

created a new tree based visualization, as seen in figure 3.4, yet to be

integrated into the web GUI. The user can create and manage the structure

of the tree by simply dragging and dropping the desired Tasks. For example,

the user can drag any Task from the first side pane onto the tree canvas to

create that node. If that is the first node on the canvas it is automatically

assumed to be the root node. Dragging another Task onto an already existing

node will create two more nodes that will be assumed as the children of the

first. The Task that is dragged on is selected as the success child by default,

with a blank Task template for the failure child. During this process one can

25

click on any of the nodes to edit them and specify any special properties like

the ones previously mentioned for CompositeNode as well as some other

ones like run-once and duration. Run once is a directive for the Engine to

make sure that the Task gets executed only once, even if the whole

behaviour is set to run multiple times. This can be useful in situations where

a first-time set-up step might be necessary. Duration is another important part

of the user-model design process as it directly affects the realism of the whole

model. The user can choose any positive integer or range of integers for the

duration of any node. If a range of integers are specified (ñ5-15ò), the Engine

randomly and inclusively selects a value within the specified bounds. This

value must not be less than 0.

Figure 3.4 A screenshot showing the visualization to be used in the Yoshka web GUI.

26

 At the end of the process, the user can choose to save the current

behaviour as a template for future reuse and/or export it as a YAML file for

Yoshka. It is also possible to create these user model behaviour files directly

through a text editor, if one so chooses.

3.4 Yoshka Dependencies

The Yoshka framework has several Java library dependencies that it

requires to function properly. These dependencies are:

¶ TrafficGen APIs

¶ Log4j2

¶ SnakeYAML

¶ TestNG

¶ Apache Commons CLI

¶ Apache Commons Math

¶ Apache Commons Lang

¶ JSON

¶ Freemarker

The traffic generation APIs let us easily generate HTTP, FTP, Git,

SMTP and SQL traffic, the Log4j2 logging library, the SnakeYAML library for

parsing YAML files into Java code, the TestNG framework to aid in testing of

Java code, the Apache commons CLI framework to aid in the creation and

management of command line options, the Apache commons Math

27

framework to help create and manage distributions, the Apache Commons

Lang package for auxiliary data structures, the JSON library to help parse

JSON data into Java code and the Freemarker library to help generate

source files.

To manage these dependencies, we use Maven. Maven is a

dependency and package management tool used with Java code. While it is

not strictly necessary to use with Yoshka, it is highly recommended due to

the tedious nature of dependency and package management of Java code

using standard Java commands.

28

Chapter 4

Illustrative Scenario

We designed this framework to be portable and extensible enough to

be used in a variety of use-cases, but our primary purpose for it is the

generation of non-synthetic background network traffic. We used some

Apache libraries to help us write the APIs we could use in the framework to

create a realistic traffic generator. These APIs make use of the libraries to

make direct calls to the services we want to replicate (SMTP, FTP, SSH, etc.)

thus ensuring the authenticity of the traffic produced through emulation rather

than simulation. By making calls to these services that establish real

connections between servers and clients using real protocols, we can

guarantee that any intricacies of the traffic produced is natural and not an

artifact of the generation process.

4.1 Scenario Design

To illustrate the proposed framework, we introduce an example of how

an experiment may be constructed. We use the framework to design the

scenario and then provide ways to evaluate it.

Consider a scenario where there is a testbed, created on a virtualized

cloud provider, and provisioned with the services and routes to represent a

29

software development company. There are also adversaries present in this

scenario causing service interruption to the company.

This testbed has multiple domains representing various departments

in the company and an external domain which represents the Internet, where

the customers of the company are located.

The services that are required for the scenario are described below and

depicted in Figure 4.1:

1. DNS Server: A server to resolve names to IP addresses. There can

be one or there can be many interconnected.

2. Mail Server: An SMTP server to send and receive emails.

3. FTP Server: A proftpd server to allow the storage of files on the server

that others can access using the file transfer protocol.

4. Database Server: A MySQL server to allow the maintenance of

various records.

5. Web Server: An Apache web server to emulate the companyôs

external and internal web services.

6. Git Server: A version control server for the developers to maintain their

code.

30

Figure 4.1 A diagram representing the sample enterprise network we have designed for this scenario.

It is at the userôs discretion to decide on the number of each type of

server or in which domain they are to be located. The assumptions that we

make are that the DNS will be able to resolve the requests and the resolved

addresses will be reachable.

We then begin defining our user models for various domains which

would emulate employees of the company.

We have developed two ways to create these behaviors:

1. Web GUI. Using a drag & drop web GUI where the user can drag

various nodes and provide configurations for the nodes and build a

complex behavior tree from it.

31

2. YAML file. The user can also choose to write their behaviours in YAML

(an example will be shown below) which allows for more control and

gives access to more features of Yoshka.

We will now demonstrate the creation of a simple behavior which would

check the web service and if it can't access it, send an email to tech support

for help. The first action is designed to take 10 seconds. The parameters of

some of the tasks are specified in angle brackets to indicate that they can be

dynamically changed before or after deploy time.

Figure 4.2 A picture of a sample behaviour YAML file.

32

Above is a simple example demonstrating how one would define a

behavior of some user or agent. It is also possible to create a group of

behaviors which can be linked to each other just like individual Tasks for

simpler and easier behaviour creation, management, maintenance and

reuse. A group of behaviours can constitute some sort of broader mission or

goal when executed together.

For instance, in the case of the aforementioned software development

company, we model customers who collaborate with the company designers

to create a new product. Once the software development companyôs product

is finalized, the developers upload all their documents to the FTP server and

let the engineering team know about the new product and where the

documents are uploaded in the FTP server using an email message. One

example of such a behaviour we designed can be seen in figure 4.3. In this

behaviour the user model performs three main actions in sequence which are

sending an email, committing some code and creating a bug ticket. The

engineering team then starts developing the new product and keeps the

design team in the loop through email. The development of features is

emulated by randomly uploading a file to the Git server. Once the product is

developed, the engineering team lets the customer support team know about

the new product, via email, and lets the technical operations team deploy the

new code. The customers can then visit the web server and file any bug

reports or issues with technical support. Along with this, there would be an

33

accounting department issuing paychecks to all employees periodically. If an

employee is not paid, then that employee would stop working jeopardizing

the workflow of the software development company.

We assume that the users of Yoshka will have some type of

virtualization provider setup along with all the instances having SSH installed

on them for easier management and automation purposes.

34

Figure 4.3 An example behaviour for a software developer in the software development company.

35

4.2 Scenario Tools & Implementation

For the backend of the scenario we are using OpenStack and our

cyber range interface VINE. As mentioned previously, the Virtual

Infrastructure for Network Emulation is an interface to the OpenStack

backend that lets us manage, deploy and configure various virtual machines

and the connections between them. In our case, all the machines use the

Ubuntu 14.04 image.

In this case, we import our testbed which contains the various

domains, address spaces and instances within each domain. Once the

testbed is up and running, we need to be able to provision the network and

tweak any additional network configurations. To achieve this goal, we use a

tool called Ansible.

Ansible [29] is an IT automation tool used to easily control a large

number of machines - either virtual or physical. Ansible uses a script called

a playbook to leverage control over machines. Given a large testbed, we use

Ansible playbooks to provision the entire network and setup networking and

the various services required for our scenario. The Ansible playbooks also

setup an ELK stack instance to aid in emulation evaluation. We have created

playbooks to deploy Yoshka along with the user models to the client

machines. The playbooks install Yoshka as an Upstart service on the

instances. Upstart is a tool that comes packaged with Ubuntu 14.04. It is, ñan

36

event-based daemon which handles starting of tasks and services during

boot, stopping them during shutdown and supervising them while the system

is runningò [30]. If not for Ansible and Upstart, we would have to manually

perform these steps. We made sure to make Yoshka independent of these

tools for the sake of portability. Neither Ansible or Upstart are required to use

Yoshka.

The previously mentioned ELK stack refers to the Elasticsearch,

Logstash and Kibana suite of software [31]. Elasticsearch is a, ñdistributed,

RESTful search and analytics engine é that stores your dataò [31]. Using

this tool one can easily search and query the necessary data. Logstash is an,

ñopen source, server-side data processing pipeline that ingests data from a

multitude of sources simultaneously, transforms it, and then sends it to your

favorite óstashôò [31]. Kibana lets the user visualize the Elasticsearch data and

navigate the Elastic Stack. Once again, we use this suite to help us visualize

the events generated by Yoshka. While the ELK stack is not necessary for

Yoshka to run, we use it to help us better organize and interpret the data

produced.

37

4.3 Scenario Evaluation

For logging purposes, we use the Log4j2 library which comes with a

feature to forward log events to Logstash through the logging configuration

file. We set up an ELK stack on one of the machines of the software

enterprise network to be able to visualize the data. The IP address of that

machine is what gets defined in the logging configuration file for the socket

connection. The framework keeps track of all Tasks and their metadata such

as status, duration, etc. After the log data is sent to the ELK machine, we

Host statuses Proportionate execution frequency of Tasks

Service health

Proportion of executed Tasks per user model

Figure 4.4 A screenshot of the scenario running being visualized in Kibana.

38

need to set up a few filters to be able to parse the logs and retrieve the data

we need. Logstash then automatically uses these filters to parse the data and

save it to be queried by Elasticsearch. These events can be then visualized

using Kibana dashboards as depicted below.

As we can see from figure 4.4, there is a dashboard that takes various

information from the framework and depicts it in appropriate graphs. On the

left side is several line graphs that each show the status of a host running

their respective behaviour. The green line indicates a successful Task status

and a red line indicates a failed Task status over time. On the right side, we

have a large donut graph representing the total number of Tasks and their

proportionate frequency on the network. The bigger the slice, the more times

that Task has been run. This graph is depicted in figure 4.5. As we can see,

the two Tasks that are run most often are MailLoginTask and

Figure 4.5 A donut graph showing the proportion of all Tasks executed on the network.

39

MailLogoutTask. Right under this graph is a number of line graphs

representing the health of the services on the network (mail, FTP, etc.) At the

very bottom are several smaller donut graphs each belonging to a separate

user model. The slices in the donut graph represent the proportions of

different Tasks that are being executed in those behaviours. Under these

graphs is a table listing the same information in text format.

During the scenario, we simulate an attack on the network by disabling

the Mail server, thus causing all the dependent user models to start failing.

This can be seen in figure 4.6. As seen from the graphs, all the user models

dependent on the Mail server start indicating failure on their line graphs on

the left. The services health graphs are mostly the same, except for the Mail

server line graph which shows a fail state. Due to this change, the proportion

of Tasks executed on the network also changes because of the way the user

Figure 4.6 A donut graph showing the proportion of all Tasks executed on the network after the attack.

40

models are designed. No longer are ReadMailTask, MailLoginTask and

MailLogoutTask dominant on the donut graph as seen in figure 4.7.

Thanks to the log files produced by Yoshka and the visualizations

produced by Kibana, we can verify the intentions of our user models and

evaluate the scenario as a whole. Using this framework, one can design any

sort of mission that involves cyber activity and then evaluate its success or

failure independently, or in conjunction with other tools.

To demonstrate the adaptability feature we have set up a simple user

model consisting of four actions in a different scenario from the software

development company. We construct this behaviour as is seen in figures 4.8,

4.9 and 4.10. Figure 4.8 is the actual behaviour file that we use as the input

Mail server dependent

behaviours failing

Proportion of Mail related Tasks

reduced

Mail server is down

Figure 4.7 A Kibana dashboard showing the state of the network after the mail server is disabled.

41

for Yoshka. Figure 4.10 is graphical representation of the same behaviour

prior to adaptability being triggered and figure 4.9 shows the execution path

after adaptability is triggered.

Figure 4.8 The behaviour we designed to showcase adaptability.

The root node of the behaviour is the adaptable node which uses the

Poisson distribution for its selection policy. This node contains three other

Tasks: executing a Linux command to check running processes, reading a

nonexistent file and executing another Linux command to echo a message.

We set the change threshold to 3 failures and the forgetfulness threshold to

5 iterations in our Engine properties. This means that given a Task in an

42

Adaptable node, if one of them fails three times in a row, then that Task is

guaranteed not to run for at least 5 following iterations, even if it selected for

execution by the distribution. We can see this behaviour in the logs produced

as seen in Appendix A and simplified in figure 4.11.

From figure 4.11 we can see that ReadFile task is selected for

execution in the first step and fails since the required file is not found. We

remove the file on purpose to induce failure and showcase this feature. After

a few more iterations, the ReadFile task gets selected for execution for the

fourth time and fails again, but this time triggering the change threshold value

as seen indicated in blue right before step #12. When the distribution

Figure 4.10 A tree diagram showing the execution path of the Adaptable node prior to triggering the change
threshold.

Figure 4.9 A tree diagram showing the execution path of the Adaptable node after the change threshold is
triggered.

43

selection policy selects the ReadFile task for execution again, it gets

overridden by the adaptability feature and the next Task is selected for

execution instead ï Echo as seen in step #12. After five more iterations, the

forgetfulness feature gets triggered and the ReadFile task is available for

execution once again. This can be seen in the second blue line right after

which the ReadFile task is indeed selected for execution and is actually

executed.

44

23:06:40.653 [main] INFO - Step #1 Running node - name: readFile, task:
generics.ReadFileTask, args: {name=readFile,
file=./src/main/testResources/distribution.txt}, duration: 5-15,
23:06:40.654 [main] WARN edu.fit.hiai.yoshka.tasks.generics.ReadFileTask -
ReadFileTask.run: File distribution.txt not found
23:06:40.654 [main] INFO - hostname = icis19 readFile status = false
23:06:52.650 [main] INFO - Processing time: 4, Duration: 12000

23:07:29.656 [main] INFO - Step #6 Running node - name: readFile, task:
generics.ReadFileTask, args: {name=readFile,
file=./src/main/testResources/distribution.txt}, duration: 5-15,
23:07:29.657 [main] WARN edu.fit.hiai.yoshka.tasks.generics.ReadFileTask -
ReadFileTask.run: File distribution.txt not found
23:07:29.657 [main] INFO - hostname = icis19 readFile status = false
23:07:44.656 [main] INFO - Processing time: 1, Duration: 15000

23:08:36.659 [main] Engine - Change threshold triggered. Overriding distribution
selection policy to execute next Task instead

23:08:36.659 [main] INFO - Step #12 Running node - name: echo, task:
generics.ExecuteCommandTask, args: {name=echo, command=echo message},
duration: 5-15,
23:08:36.661 [main] INFO - hostname = icis19 echo status = true

23:08:50.660 [main] INFO - Processing time: 2, Duration: 14000

23:09:50.664 [main] Forgetfulness triggered. Restoring previosuly forgotten Task
for execution on selection.

23:09:50.664 [main] INFO - Step #18 Running node - name: readFile, task:
generics.ReadFileTask, args: {name=readFile,
file=./src/main/testResources/distribution.txt}, duration: 5-15,
23:09:50.665 [main] WARN edu.fit.hiai.yoshka.tasks.generics.ReadFileTask -
ReadFileTask.run: File distribution.txt not found

23:09:50.665 [main] INFO - hostname = icis19 readFile status = false

23:09:55.664 [main] INFO - Processing time: 1, Duration: 5000

Figure 4.11 Framework log files simplified and colourized to showcase adaptability.

45

Chapter 5

Informal Qualitative Evaluation

To help us evaluate our framework in a qualitative way we decided to

conduct an informal study to assess the frameworkôs ease of use in terms of

speed, capability, extensibility and feature set. Testing this framework in

terms of the realism of the network traffic would be invalid since at that point

we would be evaluating the ability of the user to create user models rather

than the capabilities of the framework by itself. It is also difficult to compare

performance figures with other similar tools since there is no other tool that

has the same capabilities as Yoshka out of the box. Therefore, we created a

table to qualitatively compare Yoshka with one low level traffic generation

tool and one high level cognitive modelling tool. The two pieces of software

that we will be comparing Yoshka against are Ostinato and Soar respectively.

5.1 Qualitative Scenario Design

To help us make these comparisons and evaluation we designed a

simple scenario for a group of volunteers to complete using each of the three

tools. The scenario involves the volunteer to do the following stages:

1. Create and implement a predetermined set of Actions that the user

model should be able to make.

46

2. Create and implement the logical structure required to represent

the mission.

3. Execute, if necessary, debug the mission and collect results.

4. Answer a questionnaire regarding the experience.

The predetermined set of Actions necessary to be created are creating

a text file, sending an HTTP GET request, writing to a text file and indicating

mission success or failure. The mission to be executed is a simple conditional

sequence of actions that starts with creating a file, on success, sending that

file or writing to that file and on failure failing the whole mission. This mission

is depicted in figure 5.1.

The Adaptable Task node in this diagram is supposed to indicate that

the user model should also be able to adapt to failing conditions in the

environment. In this case on success of creating a file, the model should

Figure 5.1 A tree diagram showing the example behaviour to be implemented by the volunteer
using each tool.

47

attempt to do the default task of sending a ñGETò request. If this action fails,

then, instead of failing the mission straight away, the model should adapt to

this failure and attempt to write to the file instead. If and only if both the default

and alternative tasks fail, then the model can fail the mission; otherwise the

model is successful.

The implementation and execution part of each stage of the scenario

is up to the volunteer using one of the three tools and its documentation. The

questionnaire is designed to evaluate the following aspects of each of the

three tools compared with each other: portability, extensibility, capability,

ease of use, learning curve and completeness. The full questionnaire can be

seen in Appendix B.

During the scenario, we keep track of how long it takes the volunteer

to complete each stage and the whole scenario itself, as well as the difficulty

experienced by the volunteer during each step. To measure these two

aspects, we used a stopwatch and a subjective scale from difficult (1) to easy

(5) to rate the volunteerôs experience respectively.

The volunteer is given up to fifteen minutes, prior to using each tool,

to familiarize oneself with the toolôs environment and documentation.

Following this period, the volunteer has a total of thirty minutes to complete

the entire mission. To help the volunteer figure out what s/he needs to do, a

small instruction sheet labelled ñgoalsò is provided (Appendix C). This

instruction sheet lists all the aforementioned stages to the volunteer with brief

48

explanations regarding some of the required capabilities, such as adaptability

and a diagram showing the logical structure of the mission. The volunteers

are also permitted to use any other documentation or help they can find

online. This whole process and study is explained to the volunteer using a

standard script (Appendix D).

We chose the 15 and 30 minute timings as a reasonable amount of

time, tending to the lower bound, to complete a scenario of this level of

complexity. Most users who use these tools would like to be able to complete

their goals in as little time as possible. We assume that most users would not

want to spend more than an hour on any one task and thus decided that 45

total minutes (maximum) would be an acceptable amount of time to complete

a task with this level of complexity.

5.2 Questionnaire Results

Having interviewed five colleagues with varying levels of experience

in general software development skills, we got the following results.

Table 5.1 A table comparing the average times of volunteers for the mission implementation using different
tools.

 Yoshka Ostinato Soar

Implementing Tasks 16m37s DNF DNF

Implementing Mission Structure 6m02s DNF DNF

Execution and Debugging 6m11s DNF DNF

49

Table 5.2 A table showing the average difficulty scores given for each tool.

 Yoshka Ostinato Soar

Implementing Tasks 3 1 1.6

Implementing Mission Structure 4.6 x 1.2

Execution and Debugging 4.8 x x

As we can see in table 5.1, none of the participants were able to finish

the task in time when using either Ostinato or Soar and only one participant

was not able to finish the task with Yoshka. The two former tools also

received the lowest scores on the 1-5 difficulty scale where applicable (1/5,

1.6/5, 1.2/5). Yoshka, on the other hand, has an average time of 16 minutes

and 37 seconds for implementing Tasks, and around 6 minutes for

implementing the mission structure and the execution and debugging stages

of use each. None of the volunteers chose to use the code generation method

for implementing the first stage. It was later discovered through additional

comments, that they felt uncomfortable risking to use that feature due to the

lack of documentation. Compared to the other tools Yoshka also received

higher scores in terms of ease of use and understanding; a medium score of

difficulty (3) for implementing tasks and an almost maximal score (4.6 and

4.8) for the other two stages of use.

50

5.3 Results Analysis

 As we can see in Table 5.1 Yoshka is the only tool that the volunteers

could successfully complete the mission with in the allotted timeframe.

Despite Soarôs large documentation pool and resources, the complexity of

the architecture made it very difficult and seemingly impossible to complete

the task in time. The comments provided by the volunteers indicated that

there was not enough time to learn how to use Soar and apply that knowledge

to the problem. In Ostinatoôs case, there was a lot less documentation, but

also a lot less complexity and capability. The volunteers were unable to finish

the task with this tool because it lacked the capability of supporting higher

level abstract concepts such as tasks, and missions. The general feedback

from volunteers favoured Yoshka compared to the other tools as expressed

in the difficulty scores and some of the additional comments sections

provided on the questionnaire. Looking at the difficulty scores, we see that

the volunteers found implementing tasks to be the most difficult part of the

process. The other two stages of the process (especially execution and

debugging) were deemed trivial as indicated by the almost perfect difficulty

score of 4.8/5 and the additional comments.

 Based on these results and the comments from the volunteers we

constructed the following table to help us compare the capabilities, ease of

use, extensibility, portability and completeness of each tool.

51

Table 5.3 A table comparing the features and capabilities of Yoshka, Ostinato and Soar.

 Yoshka Ostinato Soar

Adaptability a x a

Ease of Use a x x

Extensibility a a a

Portability a a* a

Completeness User modelling

and traffic

emulation

Traffic

simulation only

User modelling

only

 As we can see from table 5.3, we were able to achieve all of the design

goals we envisioned for Yoshka so far. There is much room for improvement,

as we will discuss in the next chapter, but compared to the two closest tools

we can find in the field, Yoshka is either more capable and adaptable or

easier to use in terms of speed. Some other improvements to the framework

were identified thanks to the additional comments from the volunteers. These

comments mostly revolved around the lack of a graphical user interface for

the entire process, especially evaluation during execution, and some issues

with documentation.

* It is important to note that even though Ostinato is available on all

three major platforms (Windows, Mac, Linux) it is free only on Linux, whereas

Yoshka and Soar are free on all three platforms.

52

By completeness we mean to evaluate whether each tool has the

capability for cyber emulation ñout of the boxò. Yoshka is the only tool out of

these three to support this feature. Ostinato only supports traffic generation

though simulation and Soar only support general cognitive modelling with no

built-in functionality for cyber emulation capability ñout of the boxò.

Yoshka bridges the gap between simple traffic simulators and

complex cognitive modelling frameworks and thus requires a comparison of

different capabilities and features using different tools. Compared to

Ostinato, and other low-level simulation type tools, Yoshka can support the

same general functionality of network traffic generation via emulation, but

with extra capability such as adaptability and the expressivity leveraged by

higher level concepts and constructs. Compared to Soar, and other high-level

cognitive modelling type tools, Yoshka supports capability such as

adaptability, but also makes it much easier to be used, especially in rapid

prototyping type tasks.

5.3 Comparison of Mission Implementation

 To help further compare the three tools, we have implemented some

of the key features of the mission (as much as possible) using each tool. We

will begin with the implementation of the mission in Yoshka, followed by

Ostinato and ending with Soar.

53

5.3.1 Implementation in Yoshka

 Implementing all three stages of the goals document is designed to be

simple and streamlined in Yoshka. The user is provided with a few pages of

documentation and examples for various use cases. For the first stage of

implementing a Task in Yoshka the user has two options: use the

documentation and examples to write the necessary code by hand, or use

the -gip options to generate most of the necessary code and only implement

the run() method by hand. The sample code provided to the user can be seen

in figure 5.2.

For this scenario, the user has several choices about how to complete

the first stage of the scenario. Yoshka comes prepackaged with Tasks to

indicate mission success and failure, as well as Tasks for HTTP traffic

generation located in the web package. Given the fact that it also supports

arbitrary Linux commands, the volunteers can use the generic

ExecuteCommandTask to complete the remaining file manipulation actions

required in the first stage. Optionally the user can also choose to implement

the two file manipulation Tasks as separate classes to make them more

readable and reusable.

54

public class SampleTask extends Task {

 private final static Set <String > requiredKeys = Stream . of ("name" ,

"filename"). collect (Collectors . toSet ());

 private final static Set <String > optionalKeys =

Collections . emptySet ();

 private String filename ;

 private String message ;

 /**

 * Default constructor.

 */

 public SampleTask () {}

 /**

 * Real constructor.

 * @param parameters to set.

 */

 public SampleTask (final Map<String , Object > parameters){

 this . name = (String) parameters . get ("name");

 this . filename = (String) parameters . get ("filename");

 this . message = (String) parameters . get ("message");

 }

 /**

 * Execute task.

 * @return status of task.

 */

 @Override

 public boolean run () {

 File file = new File (filename);

 try {

 if (file . createNewFile ()){

 return true ;

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 return false ;

 }

 /**

 * Getter for required keyset.

 * @return Set of strings.

 */

 @Override

 public Set <String > getRequiredKeys () {

 return requiredKeys ;

 }

 /**

 * Getter for optional keyset.

 * @return Set of strings.

 */

 @Override

 public Set <String > getOptionalKeys () {

 return optionalKeys ;

 }

}

Figure 5.2 A snippet of code showcasing the sample Yoshka Task that was provided to the volunteer.

55

For the second stage of the scenario the user needs to implement the

logical structure of the mission. This is easily achieved using the behaviour

files in Yoshka. Once again the user has the option between using the web

GUI or simply using a text editor. However, since the web GUI does not yet

support advanced CompositeNode features like adaptability, the user must

resort to using the text editor to be able to complete this stage. It is still

possible to use the GUI to create an initial general, logical structure as

specified in the goals diagram (figure 5.1) and then export the YAML file to

edit by hand to reflect the adaptability requirements. This behaviour YAML

file looks like the previously shown example in Chapter 4, figure 4.1.

For the third and final stage the user needs to execute and, if

necessary, debug the Task and behaviour files. Before the user can run the

code, it is necessary to repackage Yoshka into a Java archive file (.jar). This

can be easily done with the help of Maven. To do this we run the following

command: ñmaven package -P uberò in the same directory as the project.

The -P option indicates to use the uber profile already provided in the

pom.xml file of the project. After the packaging is complete the user can

finally execute the user model using the following command: ñjava -jar <path

to Yoshka.jar> -c <path to Yoshka Engine configuration file> -b <path to

behaviour file> -l <path to logging configuration file> -f <times to run>. All the

default configuration files are provided with the Yoshka framework.

56

5.3.2 Implementation in Ostinato

Implementing any of the stages of the mission in Ostinato proved to

be practically impossible. This is primarily because Ostinato does not support

any higher-level concepts such as abstract tasks, missions, adaptability or

logical control flow structure. This is simply a traffic generation tool that one

can use to simulate packets.

To generate traffic, Ostinato provides the user with a graphical user

interface for packet crafting which can be seen in figure 5.3. To start

generating traffic the user needs to select a port in the left pane of the window

Figure 5.3 Ostinato graphical user interface.

57

and then create a stream for that port in the right pane of the window. After

the stream is created it can be edited by double clicking it. In the editing

window that comes up, the user can select which protocol to use for the first

four layers of the network stack and if there should be a payload. The options

for the first layer are MAC or none. The options for the second layer are

Ethernet II, 802.3 raw, 802.3 LLC, 802.3 LLC SNAP and none. The options

for the third layer are IPv4, ARP and none. The options for the fourth layer

are TCP, UDP, ICMP and none. After the user is done selecting the protocols,

he can switch to the protocol data tab to edit the parameters of the selected

protocols. In case of IPv4, the user can edit the source IP and port as well as

any flags and payload.

In the next tab, called stream control, the user can choose between

sending packets or bursts and configuring the number of packets or bursts.

Finally, in the packet view tab, the user can review what the end result

packets would look like. If everything is okay the user can press the Ok button

and must press the Apply button in the top right of the original window.

At this point, the user can select the required port group in the list in

the bottom of the window and use the seven buttons right above to control

the packet generation. The last magnifying glass button interfaces with

WireShark to view the generated packets.

58

5.3.3 Implementation in Soar

Soar is the only other tool in this comparison that shares the general

capabilities with Yoshka. However, the biggest problem with Soar is the fact

that it is not designed for cyber emulation specifically and thus poses the

issue of ñincompletenessò. It is not possible to use Soar to complete this

mission ñout of the boxò, in a reasonable amount of time, and requires a lot

of additional work to achieve the same goals.

Figure 5.4 shows a screenshot of the Soar GUI. On the top, we have

a typical row of buttons for general menu control. On the left is a pane to

Figure 5.4 A screenshot of the Soar graphical user interface.

