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ABSTRACT

An Algorithm for Clearing Combinatorial Markets

by

Josiane Domgang Nzouonta

Thesis Advisor: Marius C. Silaghi, Ph.D.

It was recently shown possible to solve single item auctions without revealing

any secret except for the solution. Namely, with vMB-share [4], the seller and

the buyer only learn each other’s identity and the selling price for a chosen M+1

pricing scheme. No trusted party was necessary. In this thesis we show how

vMB-share can be extended for the clearing of combinatorial negotiations with

several items, buyers and sellers. We first show how the more general problem

can be reduced to a virtual form, relatively similar to the single item auctions.

Then, some modifications in the cryptographic techniques of vMB-share are

made such that it can offer a solution to problems in virtual form. While the

problem is known to be NP-complete, a secure multiparty computation that

avoids that the secrets leak by measuring computation time necessarily takes

an exponential computation cost. Some early experiments show that small

realistic negotiations can nevertheless be solved with acceptable effort.
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Chapter 1

Introduction

Electronic commerce and agent based negotiations still raise a large number of

unsolved problems. An illustration is the radio spectrum allocations by the Fed-

eral Communications Commission (FCC). The Federal Communications Com-

mission is the US governemental agency in charge of ”regulating interstate and

international communications by radio, television, wire, satellite and cable” [7].

To allocate radio spectrum, the FCC makes public announcements of available

bandwidths. Interested parties submit a pricing proposition for the ranges of

their interest. Each bandwidth is attributed to the party offering the highest

amount. Certain questions arise regarding the way in which the attribution

process is conducted.

1. How can an unsuccesful party be sure that the winning price is indeed

higher than her proposition?
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2. How can a party express her will to offer more for bundles of bandwidths

than for their individual sums.

A formal solution to these questions exists and was recently adopted by the

FCC. It consists in running a negotiation process called auction in order to sell

the bandwidths.

1.1 Auctions and Markets

There exist different kinds of negotiations. Some remarkable instances are auc-

tions and markets.

Definition 1 (Auction:) An auction designates a public sale in which prop-

erty or items of merchandise are sold to the highest bidder [8].

An auction is a process in which all interested parties in a specific item or

set of items come together to determine, using specific rules, a party among

themselves that wins the good. We distinguish between single item auctions and

combinatorial auctions. In a single item auction, a unique seller possesses a

single item (or multiple units of an item) that he is willing to sell by auctioning it

off to multiple agents. When the auction involves a seller (or possibly multiple

sellers acting in concert) with items of different types and multiple bidders,

the auction is called a combinatorial auction. Bidders are allowed to bid on

bundle or combinations of resources presented in the auction. A combinatorial
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market exchange is a generalization of combinatorial auctions allowing for

multiple sellers and buyers [18]. In a market, every seller can be a buyer and

every buyer is a potential seller.

Some terminology used in the remaining of this report.

Definition 2 (Auctioneer [16]:) A person who sells by auction or a person

whose business it is to dispose of goods or lands by public sale to the highest or

best bidder.

Typically, the auctioneer is either the seller, or a trusted third party. The

trusted third party can be a machine (server) or a human (judge).

Definition 3 (Bidder [8]:) A bidder is a person interested in an item pre-

sented at the auction and who is willing to propose a price for the item.

When dealing with markets, we assume that the market is held by an entity

called market organizer who enables sellers and buyers to unite. An example of

such market organizer is the well known Internet-based firm Ebay. A discussion

on the relevance of accounting for market organizers in combinatorial market

exchange algorithms is presented in [19].

The form in which bids are proposed in an auction helps classify auctions in

two groups: sealed-bid auctions and open auctions. Sealed-bid auctions keep

the bidders’ bid values secret and unknown to other participants. Some sealed
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bid auction versions are the first-price sealed bid auction and the Vickrey auc-

tion [28]. In an open auction, everyone learns each other’s proposed bids. Two

important variants of open auctions are the English auction and the Dutch auc-

tion. Our algorithm is currently compatible with first-price sealed bid auctions.

A problem we want to address in the future is the extension of our protocol to

Vickrey type auctions.

1.2 Problem Statement

As previously defined, a single item type auction involves a single seller with

one/multiple units of an item that she presents to the agents engaged in the auc-

tion. Protocols have been proposed to successfully conduct such auctions with

variable levels of privacy. A novel technique that presents a lot of interesting

characteristics is vMB-Share [3]

vMB-Share allows a seller to conduct a single item auction without the need

of a third-party as auctioneer. As commonly accepted, it is not possible to

completely trust a third-party with the auction result. The risk of an untruthful

judge collaborating with a subset of agents or simply modifying the results of the

auction for some personal reasons can never be fully excluded. More, the judge

can extract information about good reservation prices, removing the auction’s

truth incentiveness.
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vMB-Share prevents such situations by distributing the trust among the

seller and the bidders. If the auction consists of t − 1 agents and one seller,

no information about the result can be infered even by any subgroup of t − 1

participants coming together. Unless all t agents collude, in which case the result

of the auction is normally computed, no subgroup of less than t participants

can get any information about the result.

vMB-Share is an efficient protocol for single item type auctions. However,

single item auctions are not sufficient to correctly model and solve all types of

negotiations. We want to extend it to combinatorial market exchanges.

Example: Nancy just got a raise and would like to take a vacation. All flights

are booked and the best hotels do not have any availability room during her

vacation period. She decides to try and get a fligt ticket and a hotel reservation

through an auction website. However, she does not want to acquire the ticket

unless she is able to buy a hotel reservation for the same period. Two individu-

als, Chris and Marc, are each selling one of these items. Marc is not willing to

sell his hotel reservation unless he can also sell the tickets he bought for a music

concert at the same hotel. This example illustrates a situation which cannot be

approached and solved using vMB-Share.

Formerly, situations where a seller is offering sets of distinct items and cases

where bidders desire to acquire simultaneously items that do not necessarily

5



belong to the same seller cannot be solved. There is a need to provide a gen-

eralization that will offer a solution to combinatorial market problems, which

indeed picture real-life situations more closely.

Some protocols have already been proposed for solving combinatorial auc-

tions which are a special type of combinatorial market exchange. However, we

do not know of any that does not require the addition of a third party in the

process. We propose a protocol that enables a set of parties to clear a combina-

torial market involving multiple resources and sellers with an acceptable level of

privacy. No trusted party is needed. The protocol allows sealed-bids and ensure

non disclosure of information at any level. Only the seller and the winner of

each resource learn the information they need on the winning price. Although

constraints can be enforced on the resources by the sellers and the bidders, a

winner is to be explicitely determined for each resource separately. A summary

of the desired properties of such protocol are:

• Multiple Items: The protocol should allow a seller to auction off multiple

items.

• Sellers Constraints: The protocol should enable a seller to add constraints

on the goods. He should for example be able to enforce that a subgroup

of items be either sold together (not necessarily to the same agent) or not

sold at all.
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• Bidders Constraints: Each bidder should be given the ability to specify a

subset of items that he is willing to buy either completely or not at all.

• Privacy: The trust should be divided among the bidders themselves. No

trusted third-party should be involved in the process.

• Correctness: The protocol should be able to get the bidders entries and

correctly compute each resource’s selling price assuming a first price sealed

bid auction.

• Bid Privacy: The only bid to be revealed in the process is the winning bid

of the auction. The seller only learns the winner of each resource and the

amount he should receive for the resource.

The contribution of this work is a technique that enables a set of parties to

compute a first-price sealed bid auction without involving any external party in

the process. We designed and programmed an algorithm called Secure Negotia-

tions Solver (SNS) which is a generalization of vMB-Share to combinatorial auc-

tions and markets. The protocol is safe against passive attacks (Appendix A).

To achieve this, we combined cryptographic protocols and mathematical

concepts and theory. Our protocol ensures a secure and private auction and

offers an acceptable level of privacy. Agents involved in the auction interact

by exchanging messages. To ensure that a message is comprehensible only

7



by the addressee, all communications are encrypted using the RSA public key

encryption algorithm.

Agents should be able to enforce constraints in their proposed bids. For

this reason, we introduce the notion of auction combination table which is a

table containing all possible attributions of resources to bidders. The privacy

is enforced by making the computations on each agent side. This is possible

through a conjunction of secret sharing and multiparty computation techniques.

We implemented Shamir’s secret sharing in this algorithm. The level of privacy

of this algorithm is lower than the level of privacy of vMB-Share. This is due

to the fact that our implementation uses multiplication of secret values shared

with Shamir’s scheme.

1.3 Organization of thesis

To help provide a better understanding of the remaining of the thesis, the next

chapter focuses on all the concepts and algorithms that we used to construct

the algorithm. Chapter 3 presents some protocols proposed for solving single

item auctions and combinatorial auctions. vMB-Share is presented in details.

In chapter 4, we present and discuss the Secure Negotiations Solver. Chap-

ter 5 presents the theoretical results of the algorithm along with some early

experimental results.

8



Chapter 2

Cryptographic Techniques

We would like to enable a set of agents not necessarily located in a same com-

pound to run a secure combinatorial market exchange. We need secure channels

among agents. This is accomplished by encrypting all messages. Bidders’ bid

privacy is enforced through the usage of secret sharing. Both methods are imple-

mented using modular arithmetic, which characterizes a special case of Galois

field. We present each of these mathematical and cryptographic concepts and

algorithms in this chapter.

2.1 Galois Field

One desired property of our protocol is its correctness. The computation of

the winning bid must be accurate. Therefore, all computations need to output
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correct results. Among the operations performed in our protocol, one finds

division of integer numbers. As we know, the division of two integers can output

an integer result, but can also output a rational number. The set of rational

numbers IQ is a field. However, we chose to perform all arithmetic operations in a

special field category called Galois field. The algorithm we propose in this work

can also be implemented using rational numbers. Before defining the notion of

Galois field, we first review the mathematical notion of field in general.

Definition 4 (Field:) A field F, also denoted (F, +, *) is a set of elements

with two binary operations called addition and multiplication such that for all

a, b, c in F the following are true: [24]

• (F, +) is associative, commutative, has an identity element denoted 0 for

addition in F, all elements have an additive inverse in F.

• (F, *) is associative, commutative, has an identity element for multiplica-

tion in F. Multiplicative inverse: For all a in F, a 6=0, there is an element

a−1 in F such that a(a−1) = (a−1)a = 1.

• Multiplication is distributive over addition in the field: a ∗ (b + c) =

a ∗ b + a ∗ c.

In a field, addition, multiplication, subtraction and division can be done

without leaving the field. Examples of field are the set of real numbers and the

10



set of rational numbers. The set of natural numbers is not a field. Computa-

tions made in the set of rational numbers are safe against lost of information.

However, as we said before, we preferred to perform all the computations in

Galois field.

Definition 5 (Galois Field:) A Galois field (GP) is an algebraic field that

has a finite number of members.

A Galois field is a finite field. The number of element in a finite field deter-

mines the order of the field. The order of a finite field must be a power of a

prime number p, pn, where n is a positive integer. The finite field of order pn is

denoted GF (pn) [24]. A prime number is a number that is divisible only by

1 and by itself. When n = 1, we have a Galois field of order p. GF (p) is ZZp,

namely modular arithmetic modulo p. An example of Galois field, GF (5), is

reproduced in table 2.1 along with some arithmetic operations on the field.

2.2 Public Key cryptography

As previously mentioned, agents engaged in the auction need to exchange in-

formation among themselves. We want to use secure channels for each pair of

agents.

In order to exchange a message between agent A1 and agent A2 on a secure

channel, we encrypt it. Two encryption schemes are available: symmetric en-

11



+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(a) Addition modulo 5

x 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

(b) multiplication modulo 5

a -a a−1

0 0 –

1 4 1

2 3 3

3 2 2

4 1 4

(c) Inverses modulo 5

Table 2.1: Arithmetic Operations in GF (5)

12



cryption and public key encryption. In the next sections, we present and discuss

both of them after a brief introduction to cryptography.

2.2.1 Introduction to cryptography

Cryptography is the science of secret writing [8]. Cryptography studies show

how a readable text, we call it plaintext, can be transformed to a form that we

call ciphertext, so that only the receiver of the message is able to uncover the

original text. The first stage of the process, which deals with the transformation

of the plaintext, is called encryption. The second stage is called decryption.

Both stages usually involve the use of a key or set of keys. Figure 2.1 shows the

flow of a cryptographic process.

Figure 2.1: Cryptographic process flow

Cryptography is an ancient science. Egyptians were already using non-

13



standard hieroglyphics to hide messages 1900 BC. Julius Caesar encrypted sen-

sitive messages sent to his troops on the front. He used a now classic encryption

scheme which consists of permutations. Each letter of the original message is

replaced by the letter occupying the third position after the original letter in

the latin alphabet. Figure 2.2 shows some examples of Caesar cipher.

Figure 2.2: Caesar cipher

Replacing each letter by the third one ”upward” in the alphabet constitutes

the ”key” of the Caesar cipher. That key was shared by Caesar and the generals

on the front.

The key usage in the encryption and the decryption processes divides cryp-

tographic algorithms in two major groups: If the same key is used to encrypt

the plaintext and decrypt the ciphertext, the algorithm is called a private key

or symmetric encryption. On the other hand, if two different keys are needed

for encrypting and decrypting the data, the algorithm is called public-key en-

cryption. We implement a public key scheme in our algorithm. The following

analysis of symmetric encryption explains the reasons of our choice.

14



2.2.2 Symmetric Encryption

Symmetric or conventional encryption also commonly called private key encryp-

tion is the first and most widely spread encryption technique. Here two parties

are involved in the process: a sender and a receiver. The sender uses a key and

an encryption technique to generate a non intelligible message or ciphertext.

After receiving the ciphertext, the receiver applies the decryption algorithm and

uses the same key used at the encryption to uncover the original message. The

important element here is the key used in the process. The same algorithm will

produce different results for different values of key used.

In symmetric encryption, one key is used for both encrypting and decrypting

data. That is the key used by the originator of the message to encrypt the

plaintext is the same key that must be used by the recipient to decrypt the

ciphertext and uncover the message. The problem here is to get both parties

to share the same key. How can the sender securely share the encryption key

with the receiver of the message? The safest way is for them to meet personally

and perform the exchange. However, our application is aimed at large and

distributed audiences that are not necessarily located in the same geographical

location. Therefore we cannot consider that option. A secure exchange of the

key is not guaranteed.

We will analyze the asymmetric encryption scheme in the next section.

15



2.2.3 Asymmetric Encryption

Symmetric encryption cannot be implemented to secure communications in our

protocol: a secure exchange of keys among agents is difficult. Asymmetric or

public key encryption provides a solution to this problem. It was first published

by Diffie and Hellman from Stanford University in 1976. It uses two distinct

keys called private key and public key respectively.

• The public key is publicly known and made available to everybody. It is

used for message encryption.

• The private key, which is hidden from everybody and only known by the

recipient of the message is used for ciphertext decryption.

Public key encryption is an asymmetric process: the parties involved in the

process are not equal. The originator of the message can encrypt the message,

but he cannot decrypt the message. The decryption process requires the use of

the private key which is kept secret by the receiver.

Figure 2.3 shows the use of public key cryptography (a) for encrypting/decrypting

data and (b) for authentication purpose.

16



(a) Asymmetric encryption process

(b) Authentication process

Figure 2.3: Public key cryptography

2.2.4 Public Key Encryption Algorithms

In this section, we present two major public key encryption algorithms: the

RSA algorithm and the El-Gamal algorithm. Our protocol implements the

RSA algorithm.

17



RSA Encryption

Rivest, Shamir and Adleman introduced the RSA algorithm in 1977. The

acronym RSA is given after their names. RSA is the most widely used public

key algorithm.

RSA is based on exponentiation modulo a prime in a Galois field. Its security

relies on the difficulty to find the discrete logarithm of a number modulo a

prime [24].

Algorithm Description: To communicate with other participants, each

agent needs to generate a pair of encryption keys. The keys are used to encrypt

and decrypt messages. The following summarizes all the computation steps

required for encrypting or decrypting a plaintext.

• Keys generation

1. Randomly select two large prime numbers p and q

2. Compute their product n = p ∗ q and the Euler Totient function of

n, φ(n) = (p − 1) ∗ (q − 1)

3. Randomly select an encryption key e such that 1 < e < φ(n) and

gcd(e, φ(n)) = 1, where gcd(e, φ(n)) designates the greatest commong

divisor of e and φ(n)

4. Find d such that e ∗ d = 1 mod φ(n) and 0 ≤ d ≤ n

18



5. Publish public key KE = {e, n} and keep secret key KD = {d, p, q}

• Encryption of message M

1. Get recipient’s KE = {e, n}

2. Compute C = M e mod n, where 0 ≤ M ≤ N

• Decryption of ciphertext C

1. Take KD = {d, p, q}

2. Compute M = Cd mod n

Note that the key generation is made once. All encryption and decryption

operations use the same pair of keys. Another encryption algorithm that is also

widely used is the El-Gamal algorithm.

El-Gamal

El-Gamal algorithm is also based on exponentiation modulo a prime in a Galois

field. As RSA, its security relies on the difficulty of factoring large numbers.

El-Gamal derives from the Diffie-Hellman key exchange scheme. The algorithm

is presented below.

Algorithm Description: In El-Gamal algorithm, agents also create pairs

of keys for use when encrypting/decrypting messages.
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• Keys generation

1. Randomly select a large prime number p and two large numbers g

and x, such that g < p, x < p; g is called the generator.

2. Compute y = gx mod p

3. Publish public key KE = {y, g, p} and keep secret key KD = {x, g, p}

• Encryption of message M

1. Randomly select a number k relatively prime to p-1

2. Compute a = gk mod p and b = yk ∗ M mod p; C = a,b

• Decryption of ciphertext C

1. Compute M = b/ax mod p

Here also the keys are generated only once. All subsequent encryption and

decryption operations use the same pair of keys.

The encryption algorithm transforms messages to an unintelligible form. This

contributes in securing the communications. We now present how the data is

generated before being encrypted and transmitted to other agents.
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2.3 Multiparty Computations

Our protocol computes some addition and multiplication of the values of the

proposed bids. These operations are performed by each agent separately. How-

ever, an agent should not learn other agents bids. Secret sharing concepts and

multiparty computation techniques enable the computations to be made on

shares of secrets which by themselves reveal no information on the values of the

secrets.

2.3.1 Secret Sharing

Motivation: Let’s suppose that Alice and Bob came across a map to a hidden

treasure. They would like to go home and get ready for this exciting trip. Now,

who is going to keep the map? Suppose Alice and Bob do not really trust each

other and are afraid that if the other one gets the map, he/she might go alone

and get all the treasure for himself/herself. They need a way to share the map

so that no one would be left out of the trip. How can this be done? [11]

In more general terms, how can a secret s be shared among n agents so that

a regroupment of t agents out of the n are easily able to recover the secret but

no information about s is revealed from the complete knowledge of t− 1 shares

out of the t shares?

This situation illustrates a typical problem which can be solved by apply-
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ing secret sharing techniques. Multiple secret sharing schemes are available

for cryptographic algorithms. We present here Blakley’s and Shamir’s secret

sharing schemes.

2.3.2 Blakley’s Threshold Secret Sharing Scheme

In Blakley’s (t, n) threshold scheme [2], a secret s is represented as a t-dimension

point. Each participant receives as share the equation of a t − 1 dimensional

plan that contains s.

In order to recover the secret, t participants are needed. If a subgroup of

t − k agents collude, they are able to determine only that the secret belongs to

a k-dimensional plane. The complexity of this algorithm motivated our choice

of Shamir’s secret sharing scheme for our algorithm.

2.3.3 Shamir’s Secret Sharing Scheme

Shamir’s secret scheme [21] is based on polynomial interpolation of pairs of

points (xi, yi) on a polynomial f(x).

Let f(x) be a t− 1 degree polynomial: f(x) = s+a1x+a2x
2 + ...+at−1x

t−1

where a0 = s and ai are random numbers.

The secret s, which correspond to the value of the polynomial in x = 0, is

shared by computing t distinct pairs (xi, yi) on the polynomials with xi 6= 0.

Each agent Ai is assigned the pair (xi, yi). A technique where any t out of n
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agents can retrieve a secret while t − 1 cannot find anything is called a (t, n)

threshold scheme.

Figure 2.4: Polynomial Interpolation

To reconstruct the secret, the participants jointly, by Lagrange interpolation,

compute the value of the polynomial in x = 0 using the following formula:

s = f(0) =
n∑

i=1

yif(i) where yi =
n∏

j=1,j 6=i

j

j − i

Any t pairs of (xi, yi) uniquely determine s but any subgroup of (t-1) pairs

provides absolutely no information about s.

Numerical Sample: Suppose that a secret s = 18 needs to be shared among

five agents with a (3, 5) threshold scheme (t=3 and n=5). We perform compu-

tations in ZZ19; The sharing is a (3,5) sharing scheme; therefore, the polynomial

function f(x) must be of power 3 − 1 = 2.
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f(x) = s + a1x + a2x
2 = 18 + 16x + 9x2

The coefficients a1 and a2 are randomly selected. Each participant receives

a point on the polynomial (participant i receives f(i)); This is his share of the

secret.

f(1) = 18 + 16 ∗ 1 + 9 ∗ 12 = 5

f(2) = 18 + 16 ∗ 2 + 9 ∗ 22 = 10

f(3) = 18 + 16 ∗ 3 + 9 ∗ 32 = 14

f(4) = 18 + 16 ∗ 4 + 9 ∗ 42 = 17

f(5) = 18 + 16 ∗ 5 + 9 ∗ 52 = 0

Three agents are needed to recover the secret value which is the value of

the polynomial in x = 0. Any combination of two agents cannot infer anything

on the secret. If three participants (1, 2 and 3 for example) come together to

uncover the secret value, they can solve the system of equations formed by their

shares (f(1), f(2) and f(3)) or apply Lagrange interpolation on these values. User

1, 2 and 3 each has a share value of 5, 10, 14 respectively.

Lagrange Interpolation:

y1 = 3; y2 = -3; y3 = 1;

a0 = 3*5 + (-3)*10 + 1*14 = -1 equiv 18 in ZZ19
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System of equations:






f(1) = a0 + a1 + a2 = 5

f(2) = a0 + 2 ∗ a1 + 4 ∗ a2 = 10

f(3) = a0 + 3 ∗ a1 + 9 ∗ a2 = 14

The resolution of this system of equations outputs a0=18, a1=16 and a2=9

in ZZ19.

Shamir’s secret scheme is a fully secure scheme. However, we need not only

prevent subsets of agents from accessing any information other that what they

are supposed to know, but we also need to verify that the values sent are correct.

2.3.4 Verifiable Secret Sharing Schemes

Agents that do not follow the protocol may destroy the results or be able to infer

the value of other agents’ bids. We must ensure that each agent complies with

the protocol. In the computation of a bid’s shares for example, it is important

to check that the share value yi sent to agent Ai truly equals f(xi). Some

verifiable secret sharing schemes have been proposed, that enhance Shamir’s

sharing scheme by adding public verification of the values of shares. Although

publicly performed, the verification is completely secure and does not disclose

any information other that what was already known.
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Algorithm Description [10] To enable verification of each computed values,

each agent creates an additional polynomial of degree t − 1.

v(x) = a0 + a1x + a2x
2 + ... + at−1x

t−1 where all ai are random numbers.

Each agent publishes S = gs and Fj = gaj for all j, 1 ≤ j ≤ n. For each

share yi = f(xi) computed, the agent publishes Yi = gyi. The verification of the

correctness of the value of yi sent to agent Ai is made by confirming that

Yi = gyi

where Yi = S.
∏t−1

j=1 F
(xj

i
)

j (mod p).

2.3.5 Multiparty Computations

In our protocol, the computations of addition and multiplication of bids are

made only by agents, without a trusted party. This is achieved by using multi-

party computation (MPC) techniques [29] that enable distributed but yet secure

computations of the secret values of bids.

Definition 6 (Secure Multiparty Computation [9]:) Secure multiparty com-

putation allows two or more parties to evaluate some function of their inputs,

such that no more is revealed to a party or a set of parties about other parties’

inputs and outputs, except what is implied by their own inputs and outputs.
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The result of the function is known to everyone in the group, but no one learns

anything about the inputs of any other members other than what is obvious

from the output function.

Motivation Suppose that the members of the executive commitee of some

student association are sitting together for a chapter meeting. At a certain

point of time, they express the need to know the average value of their paychecks

earnings. However, no one is willing to reveal his bi-weekly student wage amount

to the other participants. We’ll assume that our virtual commitee contains four

(4) students, Alice, John, Nancy and Chris. Below we present a very simple and

basic protocol for computing the average amount of the paycheck of a commitee

member.

2.3.6 Sample MPC Protocol

The following is a very simple protocol that can be used to solve the above

exposed problem. [20]

1. Alice adds a secret random value to her salary and, encrypts the result

with Chris’s public key, and sends it to Chris.

2. Chris decrypts Alice’s result with his private key. He adds his earning to

what he received from Alice, encrypts the result with John’s public key,

and sends it to John.
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3. John decrypts Chris’s result with his private key. He adds his paycheck

amount to what he received from Chris, encrypts the result with Nancy’s

public key, and sends it to Nancy.

4. Nancy decrypts John’s result with her private key. She adds her earning

to what she received from John, encrypts the result with Alice’s public

key, and sends it to Alice.

5. Alice decrypts Nancy’s result with her private key. She subtracts the

random number from step 1 to recover the sum of everyone’s earnings.

6. Alice divides the result by the number of people (four in the case) and

announces the result.

This sample protocol presents some weaknesses. It assumes that all members

in the commitee are truthful. At any stage of the computation, a member could

have input an amount different from his real earning. The output average result

would have been wrong. More, any of the members could change the amount of

the previously summed values by just changing the value he received from his

predecessor. A greater risk lies in the fact the power is not equally distributed

to all participants. Alice gets to know the result first and can therefore modify

it without other participants’ knowledge. She could also subtract in step 5 a

value different from the one she input in step 1. No other participants could

perceive it. Alice could be prevented from doing this by requiring her to commit
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to the random number she used in step 1 using a commitment scheme, but when

she will reveal the random number at the end of the protocol, Chris will learn

her paycheck amount.

To solve this problem, another solution is to use an association of secret

sharing scheme and multiparty computation techniques. Each paycheck amount

becomes a secret shared among all participants. More specifically, each member

of the commitee computes the shares of his earnings using a (4, 4) threshold

Shamir’s secret sharing scheme and send each share to a member. After receiv-

ing shares from other members, each student sums all the values and divides

the obtained sum by the number of members present, 4. To uncover the average

value, the members jointly compute, by Lagrange interpolation, the constant

term of the polynomial defined by their shares. This term corresponds to the

average value of their earnings. The average function computation is distributed

to all members and each of them is individually needed to determine the result

of the computation: the power is equally distributed.

In the next sections of this chapter, we present the mathematical foundations

behind this technique. These algorithms and concepts are the same that enable

our algorithm to allow a complete unfolding of the auction without revealing

any of the involved details.
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2.3.7 Addition of Secrets

Let’s consider the distribution of two secrets s1 and s2 using Shamir’s secret

sharing scheme (Section 2.3.3) with a (t, n) threshold. The polynomials used

are of the form:

f(x) = s1 + a1x + a2x
2 + ... + at−1x

t−1

g(x) = s2 + b1x + b2x
2 + ... + bt−1x

t−1

Each agent Ai receives the shares f(xi) and g(xi). If each agent Ai adds the

shares he has, f (xi) + g (xi), he obtains h (xi). (xi, h(xi)) is a point on the

function representing the polynomial h(x) = f(x) + g(x). The new secret value

h(xi) of each agent Ai define a sharing of the secret s = s1 + s2 with a (t, n)

threshold scheme:

h(x) = (s1 + s2) + (a1 + b1)x + ... + (at−1 + bt−1)x
t−1

Numerical Sample: Three friends share two secrets s1 = 18 and s2 = 5 using

a (3, 5) threshold scheme (t=3 and n=5). Computations are performed in ZZ19;

User 1, 2 and 3 each received two shares of value {5,10}, {10,0} and {14,13}

corresponding to the secrets s1 and s2 respectively. They use a (3,5) threshold

sharing scheme; therefore, the polynomials f(x) and g(x) used to share s1 and

s2 must be of power 3 − 1 = 2. The sum of two polynomials of degree 2 is a

polynomial of degree 2. Each participant adds together her shares to obtain a

point on h(x) = f(x) + g(x).
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h(x) = a0 + a1x + a2x
2

We have: h(1) = 5+10 = 15; h(2) = 10+0 = 10; h(3) = 14 + 13 = 8 in ZZ19

To compute the value of the polynomial h(x) in x = 0, we can resolve the sys-

tem of equation formed by h(1), h(2) and h(3) or apply Lagrange interpolation

on these coefficients.

Lagrange Interpolation:

y1 = 3; y2 = -3; y3 = 1;

a0 = 3*15 + (-3)*10 + 1*8 = 4 in ZZ19

System of equations:






h(1) = a0 + a1 + a2 = 15

h(2) = a0 + 2 ∗ a1 + 4 ∗ a2 = 10

h(3) = a0 + 3 ∗ a1 + 9 ∗ a2 = 8

The resolution of this system of equations gives a0=5, a1=3 and a2=2 in

ZZ19. Verification: 18 + 5 = 23 equiv 4 in ZZ19.

2.3.8 Multiplication of Secrets

In this subsection, except when the multiplication involves the value 0, the term

multiplication can always be replaced by division.

The multiplication of a shared secret with a publicly known constant value

c is straight forward. It basically consists of performing the multiplication on
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Figure 2.5: Addition of secrets

each bidder side. The shares obtained from that operation are valid shares of

c* f (x).

Let’s consider a secret s1 shared among n agents using Shamir’s secret shar-

ing scheme with threshold (t, n). f(x) = s1 + a1x + a2x
2 + ... + at−1x

t−1. Fur-

thermore, let’s suppose that each agent Ai received the share f(xi). To obtain

the value of c ∗ s1, each agent will compute the multiplication h(xi) = c ∗ f(xi)

on his side. These new shares define a sharing of the secret s = c ∗ s1 with a (t,

n) threshold scheme and the associated polynomial function is

h(x) = c ∗ s1 + c ∗ a1x + c ∗ a2x
2 + ... + c ∗ at−1x

t−1

The multiplication of two shared secrets is more involved. Let’s suppose we

add a second secret s2 to the secret s1 above. Secret s2 is shared among the
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participants using a (t, n) threshold with the polynomial

g(x) = s2 + b1x + b2x
2 + ... + bt−1x

t−1.

Each agent now has two shares corresponding to the two secrets values.

If we multiply the two shares together, we do obtain a point on the function

representing the polynomial h (x) = f (x) * g (x). However, this polynomial

is the result of the multiplication of two polynomials of degree t − 1. The

degree of h(x) is therefore 2t − 2. This correspond to a (2t − 2, n) threshold

scheme. To uncover the secret value, we need 2t − 1 agents which is twice as

much as currently needed. If 2t − 2 > n we will even miss some data. This is

the reason why a (bn+1
2
c, n) threshold scheme is used to share secrets whenever

multiplication of secrets is to be performed.

Figure 2.6: Multiplication of secrets
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Once we have obtained the points on h(x), we are able to uncover the secret

by involving all the n agents in the computation.

Numerical Sample: Two secrets s1 = 18 and s2 = 5 are shared among

two participants with a (2, 3) threshold scheme (t=2 and n=3). We perform

computations in ZZ19; User 1, 2 and 3 each received two shares of value {1,8},

{3,11} and {5,14} for s1 and s2 respectively. The sharing scheme is a (2,3)

threshold sharing scheme; therefore, the polynomials f(x) and g(x) used to

share s1 and s2 must be of power 2 − 1 = 1. The product of two polynomials

of degree 1 is a polynomial of degree 2. Each participant multiplies her shares

together to obtain a point on h(x) = f(x) ∗ g(x).

h(x) = a0 + a1x + a2x
2 We have: h(1) = 1*8 = 8; h(2) = 3*11 = 14; h(3) =

5*14 = 13 in ZZ19

To compute the value of the polynomial h(x) in x = 0, we can resolve the sys-

tem of equation formed by h(1), h(2) and h(3) or apply Lagrange interpolation

on these coefficients.

Lagrange Interpolation:

y1 = 3; y2 = -3; y3 = 1;

a0 = 3*8 + (-3)*14 + 1*13 = -5 equiv 14 in ZZ19
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System of equations:






h(1) = a0 + a1 + a2 = 8

h(2) = a0 + 2 ∗ a1 + 4 ∗ a2 = 14

h(3) = a0 + 3 ∗ a1 + 9 ∗ a2 = 13

The resolution of this system of equations gives a0=14, a1=7 and a2=6 in

ZZ19. Verification: 18 * 5 = 40 equiv 14 in ZZ19.

2.4 Conclusion

In this chapter, we have presented the mathematical concepts and cryptographic

algorithms that we used in our work. To enable an auction without involving

third party, the computations are distributed among agents. Two important

aspects associated with this dispersion are:

• Securing the communications among agents: Because the computations

are distributed, some interactions among agents will take place. The in-

teractions need to be secured. In this chapter, we have shown that this is

securely achieved through encryption of messages. An analysis of symmet-

ric encryption and asymmetric encryption was presented. This analysis

clarified the reasons of our choice of public key encryption as our encryp-

tion scheme.

• Ensuring that no information is revealed: We presented secret sharing
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and multiparty computation techniques which enable our protocol to be

concurrently run by all agents, removing the need of a centralized compu-

tation of the result of the auction.
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Chapter 3

Auctions

Auctions protocols define the interactions among agents and between agents

and the auctioneer during the auction. In this chapter, we present the major

categories of auctions and outline their characteristics. A presentation of some

protocols proposed for single item auctions and combinatorial auctions follows.

Also, an in depth presentation of vMB-Share, which is the protocol that we

generalize in this work, is made.

3.1 Auctions Characteristics

One distinguishes four major categories of single item auctions: English auc-

tions, Dutch auctions, First price sealed bid auction and Vickrey auctions.
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English auctions: English auction is the most commonly type used in the

USA [17]. In an English auction, the seller and the bidders come together to

start the auction. The auctioneer presents the resource and fixes a minimum

bid value. If a bidder is interested in the item, she proposes a bid greater than

the previous bid amount. The bidder whose last bid is the highest wins the

auction.

Dutch auctions: In a Dutch auction, the seller and the bidders also come

together and start the auction. The seller introduces the resource and sets a

very high price. If no bidder reacts to the proposed price, the auctioneer lowers

the amount and awaits for some reaction. She continues to lower the price until

a bidder accepts to buy the item for the current bid amount.

First price sealed bid auctions: In a first price sealed bid auction, the

bidders seal their bids and give it to the auctioneer. No bidder knows the

amount bid by another participant. The highest bid wins the auction.

Vickrey auctions: A Vickrey auction is similar to a first price sealed auction.

Bids are sealed so that bidders don’t know each other bid value. The agent with

the highest bid wins the auction; however she does not have to pay the value of

her bid but rather the second highest price offered for the item.

A special type of Vickrey auction is the (M+1)-st price auction in which the
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winner of the auction pays the M+1 highest price offered for the resource.

To enable for auctions over a computer network, protocols that structure

the interaction between participants are needed. Some propositions have been

made for both single item auctions and combinatorial auctions. We review some

of them in the following two sections.

3.2 Single Item Auctions Protocols

A certain number of protocols have been devised for single item auctions, be it

single unit or multi-units [13, 15, 5, 14, 23]. However, most of these protocols

require a third party. vMB-Share, a newly developed technique, differentiates

itself by enabling a fully private and secure auction without third party. In the

next section, we describe this protocol in more details.

vMB-Share vMB-share was introduced by Brandt in 2002. It allows a set

of agents and a seller to conduct an auction without involving any third party.

Some terminology used:

Definition 7 (Bid vector:) A bid vector is a tuple where each element corre-

sponds to a certain price. The elements are ordered in the increasing value of

the price. These elements belong to a set Φ where the cardinality of Φ equals 2.

Φ = {0, λ} where λ is a publicly known by all the participants and λ 6= 0. The
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number of occurrence of λ equals the value of the bid and the size of the vector

equals the number of possible bids. E.g. λ = 1 and Γ = {1, 1, 1, 0, 0} (bid value

= 3).

Definition 8 (Differential bid vector:) A differential bid vector is a vector

whose elements values also belong to the set Φ where the cardinality of Φ equals

2. One element of the set Φ is 0. Φ = {0, λ} where λ is a publicly known by

all the participants and λ 6= 0. The position of the element λ determines the

value of the bid and the size of the vector equals the number of possible bids.

E.g. λ = 1 and Γ = {0, 0, 1, 0, 0} (bid value = 3).

vMB-Share presents many interesting characteristics:

• The protocol does not require a third party as judge. This increases the

privacy and the correctness of the process. No one can be sure that a

judge does not cooperate with a subset of bidders.

• All bidders and seller perform the computations simultaneously.

• Only the winner and the seller learn the winning price.

• The protocol is applicable to M + 1-st price type auctions.

Algorithm description: The protocol considers a finite number K of pos-

sible bidding prices. y is a value commonly known by all participants, e.g.

y=1.
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• Each bidder i selects a bid pi ε {0, 1, 2, ...,K}

• Each bidder i creates a differential bid vector ∆bi and shares it with all

other participants. The differential bid vector is such that

bij =







y if j = pi

0 otherwise

That is ∆bi = (0, ..., 0
︸ ︷︷ ︸

i−1

, y, 0, ..., 0)

• The differential bid vector is ”integrated” following the technique pro-

posed in [1]. This outputs an integrated vector obtained by successively

summing adjacent pairs of elements of the differential bid vector from po-

sition K to position 1. The obtained vector, called bid vector, is of the

form: b′i = (y, ..., y, y
︸ ︷︷ ︸

bi

, 0, ..., 0).(1)

• The differential bid vector is also integrated in the reverse way. This is

done to mask the bid vector obtained after computations so that only the

winner and the seller get to know the winning price. (2)

• Finally, the values of the bid vector obtained in (1) are shifted backward

by one position. This gives the protocol the ability to deal with the

(M + 1) − st price. (3)

• The vectors obtained from (1), (2) and (3) are multiplied with random

non-null coefficients and summed together.
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• Only the seller and the winner learn the winning bid.

VMB-SHARE Numerical Sample: In the following, we detail a simplified

numerical sample of vMB-Share.

The seller S is auctionning a single item Item1; There are 2 bidders (n = 2)

and 5 possible prices (K = 5); The computations are made in the set of integers

ZZ; j, bi ε [1, 5]; y = 1; The auction is a (M+1)st price type with M = 1. The

vector identity is I = (1, 1, ..., 1
︸ ︷︷ ︸

K=5

).

Bidder #1, B1, secretly selects her bid value $3; bidder #2, B2, secretly

selects her bid value $4;

1. Each bidder i chooses random multipliers and creates 2j random poly-

nomial. The constant component of j of these polynomials are made of

elements of the bidder’s bid vector ∆bi. The remaining j polynomials are

used for verification purposes (Section 2.3.4). B1: ∆b1 = (0, 0, 1, 0, 0)

B2: ∆b2 = (0, 0, 0, 1, 0)

2. The bid vector are integrated from component k to 1: b1 = (1, 1, 1, 0, 0)

b2 = (1, 1, 1, 1, 0)

3. Integration in reverse order: b′1 = (0, 0, 1, 1, 1) b′2 = (0, 0, 0, 1, 1)

4. The bids vectors from 2. are shifted down by one position: b”1 = (1, 1, 0,

0, 0) b”2 = (1, 1, 1, 0, 0)
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5. b = b1 + b2 = (2, 2, 2, 1, 0)

b” = b”1 + b”2 = (2, 2, 1, 0, 0)

6. b + b” = (4, 4, 3, 1, 0);

(2M+1)*I. = (3, 3, 3, 3, 3)

T = b + b” - (2M+1)*I = (1, 1, 0, -2, -3)

7. Result vectors: V1 = T + (2M+2)*b′1 = (1, 1, 0, -2, -3) +4*(0, 0, 1, 1, 1)

= (1, 1, 4, 2, 1)

V2 = T + (2M+2)*b′2 = (1, 1, 0, -2, -3) +4*(0, 0, 0, 1, 1) = (1, 1, 0, 2, 1)

Bidder #2 wins the auction because one element of her bid vector V2[3]

equals 0. She has to pay the corresponding price p3.

3.3 Combinatorial Auctions Protocols

We present here some existing protocols introduced for solving combinatorial

auctions.

Generalized Vickrey Auction (GVA) This algorithm [27] generalizes the

Vickrey auction protocol to handle combinatorial auctions. It uses the Clarke-

Grove [6, 12] mechanism to determine the amount to be paid by each winning

bidder.
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Secure Generalized Vickrey Auction using Homomorphic Encryption

[26] This is an enhancement of GVA using homomorphic encryption. Bidders’

bid values are kept secret and unknown to other agents. A set of trusted servers

are required for computing the result of the auction.

Secure Combinatorial Auction by Dynamic Programming with Poly-

nomial Secret Sharing [25] This protocol uses dynamic programming and

secret sharing technique to compute the winning bid. A third party is needed

to compute the result of the auction. No other information on the bidders bid

values is revealed in this protocol.

Several other techniques applicable to combinatorial auctions are described

in [22].

3.4 Conclusion

In this chapter, we have reviewed the types of auctions and their characteristics.

English auctions, Dutch auctions, First-price sealed bid auctions and Vickrey

auctions are presented. (M + 1) − st price auctions, a special type of Vickrey

auctions, are also introduced. Then we have presented some protocols proposed

for single item auctions and combinatorial auctions with an emphasis on vMB-

Share.
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Chapter 4

Secure Negotiations Solver

(SNS)

This chapter presents the algorithm developed within the framework of this

master thesis. As stated before, this work addresses a general class of problems

that can be solved using combinatorial auctions. The proposed technique allows

for clearing markets with multiple buyers and sellers, and offers an important

degree of privacy. Other methods have been proposed to solve combinatorial

auctions and markets (Chapter 3). This method is based on vMB-share and is

a generalization of that technique to combinatorial markets.

Several situations cannot be approached with single item auctions (e.g. an

auctioneer offering sets of items that cannot be sold alone or participants in

parallel auction processes that are willing to acquire either an entire set of
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items or none of them). The concept of auction combination table proposed here

allows for using vMB-share by adding an abstraction; namely every candidate

allocation is represented by a virtual participant shared among real ones.

In the next sections of this chapter, we present an overview of SNS and

review the fundamental notions developed in order to ensure a private, correct

and secure auction.

4.1 Secure Negotiations Solver Overview

This section presents the Secure Nogotiations Solver (SNS). As in vMB-share,

the agents cooperate using multiparty computation techniques to avoid the need

of a trusted party.

Figure 4.1: Auction process

The algorithm consists of securely distributing shares of the bid for each can-

didate allocation using Shamir’s scheme. A candidate allocation is represented

by a tuple ti specifying the agents to whom each item is attributed.
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Tuple ti = (Ai1, Ai2 , ..., Ain)

where ti[k] = Aik =⇒ agent Aik gets product k for allocation ti.

The shared values are then summed for each tuple and the obtained sum is

securely transformed into a differential bid vector using a technique we describe

later. Then the problem is transformed to its virtual form: each candidate

clearing alternative becomes a virtual agent when applying vMB-share for de-

termining the (M+1)-st highest value from the summed bids.

The following subsections clearly explain the construction of auction com-

bination tables and detail how the differential bid vectors are generated. Then

the modifications needed in vMB-share are also described.

4.2 Auction combination table

As previous defined, a single item auction is a process whereby the seller pos-

sesses a unique item or a multi-unit item that he is willing to sell by auctioning

it off to the agents engaged in the auction. Protocols proposed for single item

auction are not suitable for cases where a seller is offering distinct items. For

those cases, we introduce the notion of auction combination table which is a

table of all possible allocation of resources to bidders. Each agent inputs a bid

value for every tuple in the table.
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Lemma: The number of tuples of an auction combination table when p re-

sources and n agents are involved in the auction is np.

Proof: There are n possible distributions of a product and there are p prod-

ucts. The allocations being independent, the total number of resources alloca-

tions R, is equal to the product of the number of possible allocation of individual

products. Therefore, we have:

R = Nallocation(item1) ∗ Nallocation(item2) ∗ ... ∗ Nallocation(itemp)

R = n ∗ n ∗ ... ∗ n
︸ ︷︷ ︸

p times

= np

Example 1: Suppose we have 1 item to negotiate among four participants

(Figure 4.1). The following cases may appear:

1. No agent win the item being sold (this case is part of the domain of

possibilities because we allow bidders to bid on the combination where no

agent wins the auction. The agent who bids on that combination still has

to pay the seller for her bid);

2. Agent A1 wins the auction;

3. Agent A2 wins the auction;

4. Agent A3 wins the auction;

We have a total number of possibilities of 4 and np = 41 = 4.
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Combination Item 1 Item 2 Bid

0 Agent 0 Agent 0 b0

1 Agent 0 Agent 1 b1

2 Agent 0 Agent 2 b2

3 Agent 0 Agent 3 b3

4 Agent 1 Agent 0 b4

5 Agent 1 Agent 1 b5

6 Agent 1 Agent 2 b6

7 Agent 1 Agent 3 b7

8 Agent 2 Agent 0 b8

9 Agent 2 Agent 1 b9

10 Agent 2 Agent 2 b10

11 Agent 2 Agent 3 b11

12 Agent 3 Agent 0 b12

13 Agent 3 Agent 1 b13

14 Agent 3 Agent 2 b14

15 Agent 3 Agent 3 b15

Table 4.1: Sample Agent Table

Example 2: Table 4.1 shows an agent’s combination table for that auction

when an additionnal item is added to the set of resources. A single seller A0
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proposes 2 items to 3 agents.

We call the representation of negotiations with auction combination table a

virtual form.

Agent A0 in the above figure symbolizes that the item remains to the seller.

As it can be seen, SNS allows for bidders to bid not only on individual items

but also on combination of items. Each bidder may bid on more than one

combination of items. If agent A1 is willing to pay for any item only in the

event that she gets both of them, she can bid null values for all the other

combinations except the combination #4. If agent A1 is only interested in item

#1 but is not willing to pay for it unless item #2 does not get attributed to her

opponent, agent A2, she can do so by bidding on the combination #3 and 4.

If agent A1 is mainly interested in getting item #2 independently of who gets

item #1, the combinations #1, 4, and 7 are suitable for her.

As it can be seen, the protocol is highly flexible and allows for all combi-

nations of items agents might be willing to pay for. Apparently, this flexibility

can be considered as a drawback when we consider that agent A1 can also bid

on combination #8 where she does not appear at all. But actually, this does

not influence the correctness of the algorithm because SNS first computes the

sum of bids offered by all agents for all candidate allocation.

Another approach in building the auction combination table consists of al-

lowing the agents to bid solely on the allocations in which they appear. This

50



approach is illustrated in table 4.2. This table is obtained by removing from the

agent’s table 4.1 all combinations that do not allocate a resource to the agent.

This method of construction is suitable to cases where the emphasis is put on

the bidder herself. Both approaches are compatible with SNS. It is possible to

verify that the value of a bid is positive and in a certain range.

Combination Item 1 Item 2 Bid

0 Agent 0 Agent 0 b0

1 Agent 0 Agent 1 b1

2 Agent 1 Agent 0 b2

3 Agent 1 Agent 1 b3

4 Agent 1 Agent 2 b4

5 Agent 1 Agent 3 b5

6 Agent 2 Agent 1 b6

7 Agent 3 Agent 1 b7

Table 4.2: Sample Agent Table - Type II

Example 3: An example of auction combination table when the protocol is

used in a combinatorial market exchange situation is illustrated in table 4.3. We

still have four participants. Agent A0 is selling item 1 and agent A1 is selling

item 2. The reservation price of item 2 is fixed to $5 by agent 2.
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Combination Item 1 Item 2 Bid

0 Agent 0 Agent 0 -5

1 Agent 0 Agent 1 -5

2 Agent 0 Agent 2 0

3 Agent 0 Agent 3 -5

4 Agent 1 Agent 0 -5

5 Agent 1 Agent 1 -5

6 Agent 1 Agent 2 0

7 Agent 1 Agent 3 -5

8 Agent 2 Agent 0 b8

9 Agent 2 Agent 1 b9

10 Agent 2 Agent 2 b10

11 Agent 2 Agent 3 b11

12 Agent 3 Agent 0 -5

13 Agent 3 Agent 1 -5

14 Agent 3 Agent 2 0

15 Agent 3 Agent 3 -5

Table 4.3: Seller #2 Auction Table

In this table the values for the bids are related to the reserved price fixed at

$5. Agent A2 may be willing to propose a certain price to acquire item #1. This
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is the reason why we input unknown values b8, b9, b10 and b11 for combinations

# 8, 9, 10 and 11 respectively. However, agent A2 is willing to sell her resource

(item 2). Therefore, she will not pay for the item to be reassigned to her. This

explains the bid value 0 in combinations # 2, 6, and 14. We cannot input 0 at

conbination # 10 because here a second item gets assigned to agent A2 and she

might be willing to pay for getting both items. The remaining combinations (0,

1, 3, 4, 5, 7, 12, 13, 15) are assigned the bid value $-5. This motivated by the

reserved price of $5 proposed by agent A2. This price represents the price agent

A2 will receive for her item if the market is cleared.

4.3 Building Differential Bid Vectors

After receiving shares of other participants’ bids for all entries in the auction

combination table, each agent computes the sum of shares per allocation. These

sums are then transformed into differential bid vectors to conform to the for-

mat used in vMB-share. Shamir’s sharing scheme is a homomorphic sharing

scheme. Therefore, performing addition on all shares of the secret is equivalent

to performing addition on the secrets themselves (section 2.3.7). A technique is

available for multiplication too (section 2.3.8). Consequently, we can perform

the differential bid vector transformation at each agent side using shares of the

summed value. The formula used for the transformation is
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Vti,j =

∏K
k=0,k 6=j(ysti − k)
∏K

k=0,k 6=j(j − k)

sti in the formula above represents the share of the total price of allocation

ti. Vti,j is the value at position j of the differential bid vector corresponding

to combination i. Each agent Ai knows only his share sAi
ti . Each secret value

sti ε {0, 1, 2, ...,K}. After this computation, each allocation tuple is represented

by a shared array of size K with element values γi such that

γi =







y if sti = i

0 if sti 6= i

vMB-share computes Shamir’s sharing with elements in ZZ. We could not

use integer numbers in our protocol because the coefficients of the polynomial

representing the result of multiplication are jointly generated by all agents.

Therefore, these coefficients can be rational numbers. The solution we chose to

this problem consists in using modular arithmetic as the computational type of

our sharing scheme.

Agents jointly run vMB-share modified, we will name it cMB-Share, to de-

termine the greatest value among all proposed bids. As we said before, here a

substitution is made and the allocations are input as virtual agents.
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4.4 Random Multipliers

The output from cMB-share -the modified version of vMB-Share- is a vector

where the position in the winning combination corresponding to the (M +1)−st

price is 0. The values of the other elements of the vector depend on the values

of the bids. Agents jointly compute non-null random multipliers that will be

used to hide values of their bids. The single element to remain identical is the

element with value 0; the multiplication with the random multiplier keeps its

value unchanged. Since we use modular arithmetic in our sharing scheme, the

technique used in vMB-share to generate random multipliers is not applicable.

We therefore propose a new technique of generating random multipliers for

hiding secrets. Each agent generates K random non-zero numbers mki
and

sends their corresponding shares to all other agents. These shares are multiplied

together by each participant. The resulting sum is the random multiplier that

the agent uses to mask his shares. This stage of the computation generates

some computations overhead due to the multiplication of secrets.

4.5 Winning Bids Revelation

For each candidate allocation ti, agent Ai calculates the representation of the

combination ti in base n by computing the representation of i in base n where

n is the number of participants. This representation corresponds to the list of
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bidders involved in that particular combination. Agent Ai then sends the array

of shares corresponding to ti to each one of those participants. The seller, agent

A0, is sent all shares.

Example: For the auction depicted in table 4.1, we have n = 4 participants.

To get the list of participants to whom shares of combination #6 should be sent,

we compute 6 base(4) = 12; Agents 1 and 2 are involved in that combination

and therefore the shares have to be sent to both agents.

Only the participants involved in the winning combination get to know the

winning combination and the price to pay which is the (M + 1) − st highest

amount from the summed prices. Currently, our protocol is compatible with

first price sealed bid auctions (M=0) (section 3.1).

The above computations provide the total amount the seller will receive from

all winners. It does not yet indicate the price individual winning agents will

have to pay. Here, we assume that the seller contacts those agents involved in

the winning combination and asks for their individual bids. If the sum of the

values received does not match the sum of the selling prices, the auction is null.

Another approach which is already used in [26] is to use the Clarke-Grove [6]

mechanism to determine the price each winner has to pay. Future work includes

integrating that technique in our protocol.
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4.6 SNS Algorithm Summary

The algorithm consists of securely distributing shares of bid values of all com-

binations of products to other agents using Shamir’s scheme. Each agent sums

the shares from other agents for each candidate allocation and the obtained sum

is then securely transformed into a differential bid vector.

The main steps of the generalized auction solver protocol are as follows:

Each agent Ak creates the combination table and assigns a bidding value for

each combination. For each possible combination, each agent computes the

shares of his bid bi using a (t, n) Shamir’s threshold scheme and sends it to

all other participants. The agent uses a (t, n) threshold where n = number of

participants and t = bn+1
2
c. Each agent then computes the value of c(t) for each

combination t of the global problem using existing shares. This is achieved by

summing up the shares received from other agents for each combination. Each

agent applies the technique described is section 4.3 procedure to compute the

shares of the bid vector from the value of the summed share. This is performed

for each combination. Apply cMB-share on the differential bid vectors obtained.

The number of combinations becomes the number of participants in this sec-

tion. Jointly compute random multipliers to mask the values of the bid vectors

obtained. Multiply the random values with the elements of the bid vectors.

Each agent sends the values of his bid vectors shares to other participants. For
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each combination, he sends shares only to those participants involved in that

combination and to the seller. The seller receives all shares and is able to deter-

mine the winning combination and the corresponding price. Each participant

in the winning combination gets to know corresponding price. If an element of

the differential bid vector for a combination ti is 0 (vAi

ti,k
= 0), the combination ti

is the winning combination and agent Ai is part of that combination. Together

with the other agents involved in the combination ti, she has to pay the price

pk. Figure 4.2 details the step by step algorithm.

Create combination table;

Select bids and send shares;

Sum shares and create differential bid vector;

Run vMB-share;

Multiply with random numbers;

Send shares to other agents;

Determine winning combination;

Algorithm 1: SNS Pseudo-code
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Figure 4.2: Detailed Algorithm
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4.7 Combinatorial Auctions

If the type of negotiation is a combinatorial auction, that is an auction involving

a single seller or a group of sellers acting conjointly and multiple bidders and

items, the algorithm is identical. However, the determination of individual

prices to be received from each winning agent is different. Here, the Clarke-

Grove [6] mechanism can be applied to determine a specific amount for each

agent involved in the winning combination as described in [26].

4.8 Discussion

vMB-Share makes computations in the set of integers ZZ. As it was pointed out

in section 2.1, our protocol involves division of integers numbers and therefore

requires the computations to be made in a field. We chose to make our compu-

tations in a Galois field. The order of the field is a randomly generated large

prime number.

The determination of the price each winner has to pay can be improved by

using Clarke-Groves [6] as implemented in [26]. Another point of improvement

is the level of privacy of the algorithm. The current level is n
2

which means that

if n
2

participants collude, they are able to infer some information on the values

of secrets. We think that the level of privacy can be increase to n (fully private).

This constitutes part of future work.
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Chapter 5

Theoretical and Experimental

Results

5.1 SNS Protocol Characteristics

In section 1.2, we presented the desired properties of the protocol. In this

section, we list each of these properties and for each of them, we specify whether

or not the requirement was fulfilled.

• Multiple items: [Fulfilled] Our protocol allows for the seller to propose

more than one item to the agents.

• Multiple sellers: [Fulfilled] The protocol allows for more than one seller in

a negotiation.
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• Seller’s constraints: [Fulfilled] The protocol allows a seller to add con-

straints on his items. He is able to enforce that a subgroup of items be

either sold together (not necessarily to the same buyer) or not sold at all.

• Buyer’s constraints: [Fulfilled] Each bidder is given the ability to specify

a subset of items that she is willing to buy either completely or not at all.

This enables her to enforce constraints on items she is willing to pay for.

(e.g. if an agent is willing to pay for item #2 only if she has item #1,

she will bid for the corresponding combination in the auction combination

table. If it is the case that she only wants to buy item #2 and has no

interest on the other items, she is also able to do so.

• Privacy: [Partially Fulfilled] The privacy in enforced by dividing the trust

onto the bidders themselves. No trusted third-party is involved in the

auction. However, we make some multiplication on the values of the

secrets. For this reason, the threshold scheme is reduced to (bn+1
2
c, n)

(section 2.3.8). The method offers only n/2 privacy: if bn+1
2
c participants

collude, they are able to infer some information on the values of secrets.

• Correctness: [Fulfilled] Our protocol securely input the bids and success-

fully computes the winning price for each item.

• Bid privacy: [Fulfilled] Only the seller and the winners learn the total

winning price of the auction. The price to be paid for each distinct resource
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is shared by the seller and the winner of the resource.

• Truth incentiveness: [Not Fulfilled] Our current protocol is compliant with

first price sealed bid auctions. However, it can be easily extended to

Vickrey auctions and (M + 1) − st price auctions.

5.2 Messages Send/Receive

We can compute the expected number of messages exchanged among partici-

pants during the auction. This is a measure of the efficiency of the algorithm.

We devised a formula that output the number of messages sent/received by

each agent. This number of messages is a factor of the number n of agents, the

number of items and the total number of prices K. More precisely,

Number messages = nNitems ∗ K + nNitems ∗ K ∗ (K − 2) + 3

• nNitems ∗K represents the number of messages exchanged for determining

the winning combination

• nNitems ∗ K ∗ (K − 2) corresponds to the number of messages exchanged

during the transformation of the summed secret to differential bid vector

form

• 3 expresses the number of messages sent during the initial sharing phase

+ computation of commonly shared random multipliers.

63



Number messages = nNitems ∗ K ∗ (K − 1) + 3

where is n is the number of participants,

Nitems is the number of resources presented in the auction and

K is the total number of prices for each allocation.

The component nNitems in the formula represents the total number of re-

sources allocation in the auction (cf. section [sec:auctiontable]). From this

formula, we have computed the expected number of messages sent for different

auction scenarios. Our variables are the number of participants, the number of

resources available and the maximum number of prices allowed in the auction.

The results are summarized in the following tables and figures.

Number of prices K = 5

Participants 3 5 10 20 30 40

Items 3 3 3 3 3 3

Auction Combination Ta-

ble

27 125 1000 8000 27000 64000

Messages 543 2503 20003 160003 540003 1280003

Table 5.1: Messages Exchanged - Items=3

This table shows the expected number of messages exchanged for an auction

where 3 distinct resources are proposed to a variable number of participants.

Figure 5.1 shows a plot of these data.
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Figure 5.1: Messages exchanged - Items=3

The next table shows the number of messages exchanged by a constant

number of participants (5) for different number of available resources. Figure

5.2 shows a plot of these data.

Number of prices K = 5

Participants 5 5 5 5 5 5

Items 3 5 10 20 30 40

Auction Combination Ta-

ble Size

125 3125 9765625 9.54E+13 9.31E+20 9.095E+27

Messages 2503 62503 1.95E+08 1.91E+15 1.86E+22 1.819E+29

Table 5.2: Messages Exchanged - Participants=5
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Figure 5.2: Messages Exchanged - Participants=5

A comparison of these plots with those in figure 5.3 and figure 5.4) reveals that

the number of messages exchanged depends more on the number of participants

and the number of items/resources presented than the number of allowed prices.

In these plots, the number of possible prices has been multiplied by a factor of

100 for Figure 5.3. but the increase in the number of messages exchanged is

minimal. However, a small increase in the number of participants (from p=5 to

p=10) considerably increases the number of messages exchanged (Figure 5.6).

Similarly, and even more sensibly, increasing the number of resources presented

at the auction greatly influence the computation time (Figure 5.5).
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Figure 5.3: Messages exchanged - Items=3;K=500

Number of prices K = 500

Participants 3 5 10 20 30 40

Items 3 3 3 3 3 3

Auction Combination Ta-

ble

27 125 1000 8000 27000 64000

Messages 6736503 31187503 2.5E+08 2E+09 6.74E+09 1.6E+10

Table 5.3: Messages Exchanged - Items=3; K=500
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Figure 5.4: Messages exchanged - Participants=5;K=500

Number of prices K = 500

Participants 5 5 5 5 5 5

Items 3 5 10 20 30 40

Auction Combination Ta-

ble

125 3125 9765625 9.54E+13 9.31E+20 9.09E+27

Messages 2503 62503 1.95E+08 1.91E+15 1.86E+22 1.81E+29

Table 5.4: Messages Exchanged - Participants=5;K=500
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Figure 5.5: Messages exchanged - Items=10;K=100

Number of prices K = 5

Participants 3 5 10 20 30 40

Items 10 10 10 10 10 10

Auction Combination Ta-

ble

59049 9765625 1E+10 1.02E+13 5.9E+14 1.05E+16

Messages 5.85E+08 9.67E+10 9.9E+13 1.01E+17 5.85E+18 1.04E+20

Table 5.5: Messages Exchanged - Items=10;K=100
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Figure 5.6: Messages exchanged - Participants=10;K=100

Number of prices K = 5

Participants 10 10 10 10 10 10

Items 3 5 10 20 30 40

Auction Combination Ta-

ble

1000 100000 1E+10 1E+20 1E+30 1E+40

Messages 9900003 9.9E+08 9.9E+13 9.9E+23 9.9E+33 9.9E+43

Table 5.6: Messages Exchanged - Participants=10;K=100
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Figure 5.7: Messages exchanged - Items=20;K=100

Number of prices K = 5

Participants 3 5 10 20 30 40

Items 20 20 20 20 20 20

Auction Combination Ta-

ble

3.49E+09 9.54E+13 1E+20 1.05E+26 3.49E+29 1.1E+32

Messages 3.45E+13 9.44E+17 9.9E+23 1.04E+30 3.45E+33 1.09E+36

Table 5.7: Messages Exchanged - Items=20; K=100
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Figure 5.8: Messages exchanged - Participants=20;K=100

Number of prices K = 5

Participants 20 20 20 20 20 20

Items 3 5 10 20 30 40

Auction Combination Ta-

ble

8000 3200000 1.02E+13 1.05E+26 1.07E+39 1.1E+52

Messages 79200003 3.17E+10 1.01E+17 1.04E+30 1.06E+43 1.09E+56

Table 5.8: Messages Exchanged - Participants=20;K=100
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The number of messages exchanged grows exponentially when the number

of items increases. The number of messages exchanged grows logarithmicaly

when the number of participants increases. Appendix B shows some numerical

data for the case of a constant number of participants of 10, 20 and a constant

number of resources of 10, 20 respectively.

5.3 Ties

A tie occurs when more than one participant proposed bid value corresponds to

the winning price of the auction. In combinatorial auctions, this can be depicted

by more than one candidate allocation sharing an identical total bid value. In

this case, the question arises of how to determine the winners among the agents,

more than one allocation of resources sharing the highest price.

This situation is not characteristic of combinatorial auctions. In single item

auctions, some situations may also result in ties: Two or more bidders could

separately propose an equal bid or a group of bidders could purposely decide to

input an identical bid value.

We discern two major approaches to the problem:

1. Declare the auction null: This solution is the simplest but also the less

secure. A group of bidders who purposely bid an equal amount could

learn something about the selling price just by them winning or losing the
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process. If the auction fails, they will know that their bid was equal to

the selling price. If the tie is not detected, they learn that the amount

they proposed was less that the winning price [4].

2. Look for a solution: For single item (M +1)st price auctions, [4] proposed

a certain number of methods for handling ties. Two of the suggested

methods try to avoid ties whereas the third one attempts to detect the tie

value. In overall, these methods increase the computation cost by a factor

of O(n2kM) [4]. We present each of these methods below.

• Interlacing Vector Component (INT): This method tries to prevent

ties from occuring in the first place. The method assigns specific

vector positions to each bidder. Ties cannot occur because bids from

two bidders cannot be located at the same location. The size of the

differential bid vector is increased from K to nK.

• Preventing Equal Bids (PRE): This technique is similar to the first

method. It consists of two phases: detection and correction. The

technique first look for ties in bid values. This is done by multi-

plying the difference of corresponding pair of bids with a random

multiplier. For each pair of equal bid found, K rows are inserted in

the differential bid vector. This technique is more efficient than the

first method: additional rows are not always inserted as in (INT),
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but only when needed.

• Determining Ties (DET): This third and last techniqu finds ties (if

any) and masks them, allowing the protocol to run normally. Each

bidder creates n additional differential bid vectors that are used for

masking ties. The protocol is concurrently run on these differential

bid vectors with each vector symbolizing a possible number of ties.

Only vector i, where i corresponds to the number of ties, outputs a

true result to the winner.

SNS makes use of these techniques for dealing with ties. Either method is

compatible with SNS and can therefore be used to prevent ties from failing the

auction.

5.4 SNS Experimental Results

In table 5.4, we summarize the results of some experimentations of the algo-

rithm. We ran a simulation of the Secure Negotiations Solver algorithm on a

SunOs 5.8, 2 Gb RAM machine with different number of participants and dif-

ferent number of items. We kept a constant number of prices K = 5. This was

done because, as mentioned earlier (section 5.2), the cost of the algorithm is

mainly a factor of the number of agents + sellers and the number of resources

presented in the auction.
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The above experimental results assume that a message being sent will take

a single CPU-unit time to arrive at destination. This is due to the fact that

all computations are local. Real life situations need to encounter for a message

transmission time. The figure 5.9 shows a graph of of the algorithm running

time as a function of message transfer duration.

Figure 5.9: Real time Graph
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3 participants, 3 items; combinations = 27.

Time Run: The auction is completed in an average

of 1min33s clock time. Experiment 1:

1min31s; Experiment 2: 1min34s; Experi-

ment 3: 1min33s

Messages Exchanged: We had a total number of messages of

545 sent and received by each participant.

Identical in all experiments runs.

3 participants 5 items combinations = 243.

Time Run: The auction was completed in around

2min20s. Experiment 1: 2min24s; Experi-

ment 2: 2min16s; Experiment 3: 2min24s

Messages Exchanged: We had a total number of messages of

4865 sent and received by each participant.

Identical in all runs of experiments.

5 participants; 5 items; combinations = 3125.

Time Run: The auction was completed in around

1hour00 min 09s.

Messages Exchanged: We had a total number of 62507 messages

sent and received by each participant.

Table 5.9: Experimental Results
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Chapter 6

Conclusion

The thesis presents a technique for solving combinatorial market exchanges

based on an extension of the vMB-Share protocol presented in [3]. vMB-

Share [3] is a recent technique, allowing for secure solving of single item auctions,

namely where a single seller is offering a single item or multiple unit of a single

item to multiple sellers. This algorithm is remarkable due to the high degree of

privacy that it offers. No trusted party or auctioneer is needed in any way, as

the participants decide the allocation between themselves. Moreover, no subset

of participants can find anything except the part of the solution that concerns

them. Namely, the winner learns the sum it has to pay, and the auctioneer

learns the price it will receive and the identity of the winner to whom it had to

give the object of the auction.

We show how to extend vMB-Share to combinatorial auctions. The proposed
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technique is applicable to combinatorial market exchanges. Two main elements

of the description are:

• Showing how a general negotiation problem can be reduced to what we call

the virtual form. This is a specification where each candidate allocation of

the negotiated items is treated as a virtual agent, namely a virtual bidder

to the clearing of the auction.

• The vMB-share technique is adapted to solve negotiations described in

the virtual form. Several modifications were required:

1. We show that the computations can no longer be done in IN. One

can use either modular arithmetic or rational numbers. In our ex-

periments we used modular arithmetic for the computation.

2. The technique used by vMB-share to multiply secrets with random

numbers is not applicable with modular arithmetic. We show how an

alternative can be constructed. This alternative is related with an-

other algorithm used in [4]. Use of multiplications brings additional

overhead, but they are possible as we need (n/2)-privacy schemes for

obtaining the virtual form.

3. A new technique is needed to reveal results only to involved bid-

ders. Such a technique is proposed. It can be improved and some

suggestions were made.
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To secure its degree of privacy, the running time needs to be problem in-

dependent. As our problem is NP-complete, it implies that the running time

will always be exponential. Our technique was implemented and some prelimi-

nary tests have shown that despite its intrinsic exponential cost, it can be used

successfully for some very small real problems.
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Appendix A

Attacks on Messages

Encryption of messages prevents unauthorized parties from getting any meaning

out of it in case the messenge is intercepted. The sensitivity of a message is the

key element that gives the message its value but is also why the opponent will

deploy a lot of effort in trying to access it. Attacks that can be made against

a message or a system are divided in two categories: passive attacks and active

attacks. A passive attack observes the communication or data being sent and

attempts to get some information on the message transmitted. An active attack

will try to modify or destroy the communication or data being sent.

The principal types of attacks on a message are summarized below [24]:

• Interruption: the message being sent is interrupted on the way and never

arrives at the receiver. An example is the physical destruction of a com-

munication line between parties in communication.
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• Interception: An unauthorized person gets access to the content of the

message. The message still reaches destination. E.g. copying stream of

data sent to a particular IP address.

• Modification: The message being sent is modified on the way without

either the sender or the receiver having any knowledge of it. The receiver

receives a message different from the original on sent by the sender.

• Fabrication: Misrepresentation of a party in communication. An unautho-

rized party M may contact an agent A and represent itself as a well known

partner B of agent A. M will communicate with A and might be revealed

confidential information, because agent A assumes the communication is

conducted by partner B.

Figure A.1 summarizes the security threats against a message or system.

Cryptosystems must dispose of some security requirements in order to be

strong against these threats. The main requirements are confidentiality, au-

thentication, integrity, non-repudiation, access control and availability. These

characteristics are important parameter of a cryptosystem. We provide a review

of each of them below [24].

• Confidentiality: The cryptosystem should ensure the confidentiality of

the message. In other words, the message should only be accessible to the
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Figure A.1: Attacks on a Message

parties that it is intended for. No unauthorized party should be able to

have access to the message. This is a protection against passive attacks.

• Integrity: The receiver should receive the message as sent by the origina-

tor. A message maintains is integrity when the cryptosystem insures that

there has been no insertion or modification of the content of the original

message.

• Authentication: This assures each party in communication that the other

party or parties are truly who they claim to be. The recipient is therefore

certain that the message really comes from the sender and the sender is

assured that the message is truly sent to the recipient. In either way, this

protects against any third party pretending to be any one of the parties
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for the purpose of getting access to the communication or sending false

information.

• Non-repudiation: The cryptosystem should allow the non-repudiation of

messages. This assures the parties in communication that the originator

of a message cannot deny later having sent it.

• Availability: This ensures that the legitimate users have access to infor-

mation when they need it.

• Access control: This ensures that unauthorized users are kept out of the

resources they should not have access to.
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