
Learning Nonstationary Models of Normal Network Traffic
for Detecting Novel Attacks

(Technical Report CS-2002-06)

Matthew V. Mahoney and Philip K. Chan
Department of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

{mmahoney,pkc}@cs.fit.edu

ABSTRACT
Traditional intrusion detection systems (IDS) detect attacks by

comparing current behavior to signatures of known attacks. One
main drawback is the inability of detecting new attacks which do
not have known signatures. In this paper we propose a learning
algorithm that constructs models of normal behavior from attack-
free network traffic. Behavior that deviates from the learned
normal model signals possible novel attacks. Our IDS is unique in
two respects. First, it is nonstationary, modeling probabilities
based on the time since the last event rather than on average rate.
This prevents alarm floods. Second, the IDS learns protocol
vocabularies (at the data link through application layers) in order
to detect unknown attacks that attempt to exploit implementation
errors in poorly tested features of the target software. On the
1999 DARPA IDS evaluation data set [9], we detect 70 of 180
attacks (with 100 false alarms), about evenly divided between user
behavioral anomalies (IP addresses and ports, as modeled by most
other systems) and protocol anomalies. Because our methods are
unconventional, there is a significant non-overlap of our IDS with
the original DARPA participants, which implies that they could
be combined to increase coverage.

1. INTRODUCTION
One important facet of computer security is intrusion

detection - simply knowing whether a system has been
compromised, or if an attack has been attempted. There are two
general approaches to this problem: signature detection, where we
look for patterns signaling well known attacks, and anomaly
detection, where we look for deviations from normal behavior to
signal possibly novel attacks. Signature detection works well, but
has the obvious disadvantage that it will not detect new attacks.
Anomaly detection has the disadvantage that it cannot discern
intent. It can only signal that something is unusual, but not
necessarily hostile, thus generating false alarms.

A complete intrusion detection system (IDS) might monitor
network traffic, server and operating system events, and file

system integrity, using both signature detection and anomaly
detection at each level. We distinguish between a network IDS,
which monitors traffic to and from the host, and a host based IDS,
which monitors the state of the host. These systems differ in the
types of attacks they can detect. A network IDS detects probes
(such as port scans), denial of service (DOS) attacks (such as
server floods), and remote-to-local (R2L) attacks in which an
attacker without user level access gains the ability to execute
commands locally. A host based system can detect R2L and user-
to-root (U2R) attacks, where an attacker with user level access
gains the privileges of another user (usually root). A host based
system must reside on the system it monitors, while a network
IDS can be physically separated and monitor multiple hosts on a
local network. Also, because a network IDS monitors input (and
output) rather than state, it can detect failed attacks (e.g. probes).

In this paper, we focus on network anomaly detection, which
is essentially the machine learning problem of modeling normal
network traffic from a training set. However, the anomaly
detection task differs from the classical classification task in
machine learning since only one class exists in the training data.
That is, in anomaly detection we try to learn the characteristics of
one class and determines if an unseen instance belongs to the
same class.

Most network anomaly systems such as ADAM [3], NIDES
[1], and SPADE [17] monitor IP addresses, ports, and TCP state.
This catches user misbehavior, such as attempting to access a
password protected service (because the source address is
unusual) or probing a nonexistent service (because the destination
address and port are unusual). However, this misses attacks on
public servers or the TCP/IP stack that might otherwise be
detected because of anomalies in other parts of the protocol.
Often these anomalies occur because of software errors in the
attacking or victim program, because of anomalous output after a
successful attack, or because of misguided attempts to elude the
IDS. Our IDS has two nonstationary components developed and
tested on the 1999 DARPA IDS evaluation test set [9], which
simulates a local network under attack. The first component is a
packet header anomaly detector (PHAD) which monitors the
entire data link, network, and transport layer, without any
preconceptions about which fields might be useful. The second
component is an application layer anomaly detector (ALAD)
which combines a traditional user model based on TCP
connections with a model of text-based protocols such as HTTP,
FTP, and SMTP. Both systems learn which attributes are useful
for anomaly detection, and then use a nonstationary model, in
which events receive higher scores if no novel values have been
seen for a long time. We evaluate its performance on the DARPA

IDS evaluation data set and investigate the contribution of user
vs. software anomalies toward detection.

The rest of this paper is organized as follows. In Section 2,
we discuss related work in network anomaly detection. In 3, we
describe nonstationary modeling in general, and then PHAD and
ALAD. In 4, we describe the DARPA IDS evaluation data set. In
5, we test our IDS and describe the five types of anomalies found.
In 6 we describe our implementation and its run time
performance. In 7, we conclude and describe future work.

2. RELATED WORK
Early work in anomaly detection was host based. Forrest et.

al. [5] demonstrated that when software errors in UNIX servers or
operating system services (suid root programs) are exploited in an
R2L or U2R attack, that they deviate from the normal pattern of
system calls. When compromised, these programs execute code
on the behalf of the attacker (usually a shell), rather than the code
intended by the developer (such as a DNS name server or print
queue manager). Forrest detected these attacks by training an n-
gram model (n = 3 to 6) as the system ran normally. More recent
work has focused on better models, such as state machines [16],
or neural networks [6]. Solaris makes system call information
available through its basic security module (BSM) service for this
purpose.

Network intrusion detection is typically rule based. It is fairly
straightforward to write a rule in SNORT [14] or BRO [12] for
example, to reject any packet addressed to a nonexistent host or
service, or to write rules restricting services to a range of trusted
addresses. However, it is a little more challenging to relieve the
network administrator of the task of keeping the rules updated by
monitoring the traffic to determine normal usage patterns.
However, systems such as ADAM [3], NIDES [1], and SPADE
[17] do this. ADAM (Audit Data and Mining) is a combination
anomaly detector and classifier trained on both attack-free traffic
and traffic with labeled attacks. It monitors port numbers, IP
addresses and subnets, and TCP state. The system learns rules
such as "if the first 3 bytes of the source IP address is X, then the
destination port is Y with probability p". It also aggregates
packets over a time window. ADAM uses a naive Bayes
classifier, which means that the probability that a packet belongs
to some class (normal, known attack, or unknown) depends on the
a-priori probability of the class, and the combined probabilities of
a large collection of rules under the assumption that they are
independent. ADAM has separate training modes and detection
modes.

NIDES [1], like ADAM, monitors ports and addresses.
Instead of using explicit training data, it builds a model of long
term behavior over a period of hours or days, which is assumed to
contain few or no attacks. If short term behavior (seconds, or a
single packets) differs significantly, then an alarm is raised.
NIDES does not model known attacks; instead it is used as a
component of EMERALD [11], which includes host and network
based signature detection for known attacks.

SPADE [17] is a SNORT plug-in that detects anomalies in
network traffic. Like NIDES and ADAM, it is based on port
numbers and IP addresses. SPADE estimates probabilities by
counting incoming server requests (TCP SYN packets) in a way
that favors newer data over old, and assigns high anomaly scores
to low probability events. It uses several user selectable statistical
models, including a Bayes classifier, and no explicit training
period. It is supplemented by SNORT rules that use signature

detection for known attacks. SNORT rules are more powerful, in
that they can test any part of the packet including string matching
in the application payload. To allow examination of the
application layer, SNORT includes plug-ins that reassemble IP
fragments and TCP streams.

ADAM, NIDES, and SPADE only model source and
destination addresses and ports and TCP connection state, which
catches many attempts to access restricted or nonexistent services.
However, there are two reasons that we should monitor the other
attributes of the TCP/IP protocols. First, there are many probes
and DOS attacks that work by sending malformed or unusual
packets to the victim, for example queso, teardrop, and land [8].
Queso is a fingerprinting probe that determines the operating
system using characteristic responses to unusual packets, such as
packets with the TCP reserved flags set. Teardrop crashes stacks
that cannot cope with overlapping IP fragments. Land crashes
stacks that cannot cope with a spoofed IP source address equal to
the destination. Attacks are necessarily different from normal
traffic because they exploit bugs, and bugs are most likely to be
found in the parts of the software that were tested the least during
normal use. A strict anomaly model would catch many of
these attacks [15], but currently all anomaly models that monitor
these attributes are hard coded rather than learned.

Second, an attacker may deliberately use malformed or
unusual packets to hide attacks from an IDS application layer.
Techniques include the deliberate use of bad checksums, unusual
TCP flags or IP options, invalid sequence numbers, spoofed
addresses, duplicate TCP packets with differing payloads, packets
with short TTL values that expire between the target and IDS, and
so on [13]. These techniques exploit bugs in the IDS or
incomplete implementation of the protocols. Unfortunately, this
is a common problem. For example, Handley et. al. [7] studied
four commercial intrusion detection systems and found that none
of them reassembled fragmented IP packets, a legal but rarely
used feature of the IP protocol.

3. LEARNING NONSTATIONARY
MODELS

The goal of intrusion detection is, for any given event x, to
assign odds that x is hostile, e.g.

odds (x_is_hostile) = P(attack|x) / P(no_attack|x)

By Bayes law, we can write

P(attack|x) = P(x|attack)P(attack) / P(x)
P(no_attack|x) = P(x|no_attack)P(no_attack) / P(x)

By dividing these equations, and letting odds(attack) = P(attack) /
P(no_attack), we have

odds(x_is_hostile) = odds(attack)P(x|attack) / P(x | no_attack)

We have factored the intrusion detection problem into three terms:
odds(attack), a user defined parameter or threshold; P(x|attack), a
signature detection model, and 1 / P(x|no_attack), an anomaly
detection model. In this paper, we address only the anomaly
detection component, 1 / P(x|no_attack). Thus, we model attack-
free data, and assign (like SPADE) anomaly scores inversely
proportional to the probability of an event based on this training.

Anomaly detection models like ADAM, NIDES, and SPADE
are stationary, in that P(x) depends on the average rate of x in
training and is independent of time. For example, the probability
of observing some particular IP address is estimated by counting
the number of observations in training and dividing by the total
number of observations. We believe that this model is inaccurate
because the rate depends on the state of the system, which
changes over time. State changes such as a program being started,
a user logging in, or a software or hardware upgrade may affect
the average rate, resulting in bursts of events separated by long
gaps.

We can adapt to state changes by exponentially decaying the
training counts to favor recent events, and many models do just
that. One problem with this approach is that we have to choose
either a decay rate (half life) or a maximum count in an ad-hoc
manner. We avoid this problem by taking training decay to the
extreme, and discarding all events (an attribute having some
particular value) before the most recent occurrence. In our model,
the best predictor of an event is the time since it last occurred. If
an event x last occurred t seconds ago, then the probability that x
will occur again within one second is 1/t. We do not care about
any events prior to the most recent occurrence of x.

In an anomaly detection system, we are most interested in
those events that have the lowest probability. As a simplification,
we assign anomaly scores only to those events that have never
occurred in training, because these are certainly the least likely.
We use the PPMC model of novel events, which is also used in
data compression [2]. This model states that if an experiment is
performed n times and r different outcomes are observed, then the
probability that the next outcome will not be one of these r values
is approximately r/n. Stated another way, the fraction of events
that were novel in training is r/n, and we expect that rate to
continue. This probably overestimates the probability that the
next outcome will be novel, since most of the novel events
probably occurred early during training. Nevertheless, we use it.

Because we have separate training data (without attacks) and
test data (with attacks), we cannot simply assign an anomaly score
of 1/P(x) = n/r. If we did, then a subsequent occurrence of x
would receive the same score, even though we know (by our
nonstationary argument) that a second occurrence is very likely
now. We also cannot add it to our model, because the data is no
longer attack-free. Instead, we record the time of the event, and
assign subsequent occurrences a score of t/P(x) = tn/r, where t is
the time since the previous anomaly. On the first occurrence of x,
t is the time since the last novel observation in training.

An IDS monitors a large number of attributes of a message,
each of which can have many possible outcomes. For each
attribute with a value never observed in training, an anomaly
score of tn/r is computed, and the sum of these is then assigned to
the message. If this sum exceeds a threshold, then an alarm is
signaled.

anomaly score = Σi tini/ri, where attribute i is novel in training

In the next two sections, we describe two models, PHAD and
ALAD. In PHAD (packet header anomaly detection), the message
is a single network packet, and the attributes are the fields of the
packet header. In ALAD (application layer anomaly detection),
the message is an incoming server TCP connection. The
attributes are the application protocol keywords, opening and
closing TCP flags, source address, and destination address and

port number. Our IDS consists of both components running at the
same time.

3.1. Packet Header Anomaly Detection
(PHAD)

PHAD monitors 33 fields from the Ethernet, IP, and transport
layer (TCP, UDP, or ICMP) packet header. Each field is one to
four bytes, divided as nearly as possible on byte boundaries as
specified by the RFCs (request for comments) that specify the
protocols, although we had to combine fields smaller than 8 bits
(such as the TCP flags) or split fields longer than 32 bits (such as
the Ethernet addresses).

The value of each field is an integer. Depending on the size
of the field, the value could range from 0 to 232 - 1. Because it is
impractical to represent every observed value from such a large
range, and because we wish to generalize over continuous values,
we represent the set of observed values with a set of contiguous
ranges or clusters. Each new observed value forms a cluster by
itself. If the number of clusters exceeds a limit, C, then we merge
the two closest ones into a single cluster. For example, if C = 3
and we have {3-5, 8, 10-15, 20}, then we merge the two closest to
form {3-5, 8-15, 20}. For the purposes of anomaly detection, the
number of novel values, r, is the number of times the set of
clusters is updated.

Table 1 shows the result of training PHAD with C = 32 on
"inside" week 3 (7 days of attack free network traffic) from the
DARPA IDS data set [9].

Table 1. The PHAD model after training on "inside" week 3 of the
DARPA IDS data set [9].

Attribute r/n Allowed Values
Ethernet Size 508/12814738 42 60-1181 1182...
Ether Dest Hi 9/12814738 x0000C0 x00105A...
Ether Dest Lo 12/12814738 x000009 x09B949...
Ether Src Hi 6/12814738 x0000C0 x00105A...
Ether Src Lo 9/12814738 x09B949 x13E981...
Ether Protocol 4/12814738 x0136 x0800 x0806...
IP Header Len 1/12715589 x45
IP TOS 4/12715589 x00 x08 x10 xC0
IP Length 527/12715589 38-1500
IP Frag ID 4117/12715589 0-65461 65462...
IP Frag Ptr 2/12715589 x0000 x4000
IP TTL 10/12715589 2 32 60 62-64

127-128 254-255
IP Protocol 3/12715589 1 6 17
IP Checksum 1/12715589 xFFFF
IP Source Addr 293/12715589 12.2.169.104...
IP Dest Addr 287/12715589 0.67.97.110...
TCP Source Port 3546/10617293 20-135 139 515...
TCP Dest Port 3545/10617293 20-135 139 515...
TCP Seq Num 5455/10617293 0-395954185...
TCP Ack Num 4235/10617293 0-395954185...
TCP Header Len 2/10617293 x50 x60
TCP Flags 9/10617293 x02 x04 x10...
TCP Window Size 1016/10617293 0-5374 5406-10028...
TCP Checksum 1/10617293 xFFFF
TCP URG Ptr 2/10617293 0 1
TCP Options 2/611126 x02040218 x020405B4
UCP Source Port 6052/2091127 53 123 137-138...
UDP Dest Port 6050/2091127 53 123 137-138...
UDP Length 128/2091127 25 27 29...
UDP Checksum 2/2091127 x0000 xFFFF
ICMP Type 3/7169 0 3 8
ICMP Code 3/7169 0 1 3
ICMP Checksum 1/7169 xFFFF

Table 1 shows the name of each attribute (field in the packet
header), the observed values of n and r, and a partial list of the
observed values or clusters. For example, the first line says that
out of 12,814,738 packets with an Ethernet size field (all of them
in this case), there were 508 cases where the list of clusters had to
be updated. Three of these clusters are 42, 60-1181, and 1182.
The last two could have been merged, but were not because C was
never exceeded. The maximum value of this field is actually
1514.

For most fields, we do not care what they are for, beyond their
role in parsing the packet header. We made an exception for the
checksum fields by computing them and substituting their
computed values. Although our goal is to have the IDS learn as
much of the protocol as possible on its own, we felt it was
unreasonable for a machine learning program to learn the
checksum algorithm. A value of xFFFF is a correct checksum.

Although we chose C = 32 somewhat arbitrarily, the value is
not critical. The IDS performs nearly as well with C = 1000, or if
we use a hash function (with range 1000) and a bitmap. The
reason is that the fields which generate the largest anomaly scores
are those with the lowest values of r. For those fields, any of
these models can represent all of the observed values. In [10], we
evaluate a number of other models, and choose C = 32 as the best.

3.2. Application Layer Anomaly Detection
(ALAD)

The second component of our anomaly detection model is the
application layer anomaly detector (ALAD). Instead of assigning
anomaly scores to each packet, it assigns a score to an incoming
server TCP connection. TCP connections are reassembled from
packets. ALAD, unlike PHAD, is configured knowing the range
of IP addresses it is supposed to protect, and it distinguishes
server ports (0-1023) from client ports (1024-65535). We do this
because most attacks are initiated by the attacker (rather than by
waiting for a victim), and are therefore against servers rather than
clients.

We tested a large number of attributes and their combinations
that we believed might make good models, and settled on five that
gave the best performance individually (high detection rate at a
fixed false alarm rate) on the DARPA IDS evaluation data set [9].
These are:
1. P(src IP | dest IP), where src IP is the external source

address of the client making the request, and dest IP is the
local host address. This differs from PHAD in that the
probability is conditional (a separate model for each local
dest IP), only for TCP, and only for server connections
(destination port < 1024). In training, this model learns the
normal set of clients or users for each host. In effect, this
models the set of clients allowed on a restricted service.

2. P(src IP | dest IP, dest port). This model is like (1) except
that there is a separate model for each server on each host. It
learns the normal set of clients for each server, which may be
differ across the servers on a single host.

3. P(dest IP, dest port). This model learns the set of local
servers which normally receive requests. It should catch
probes that attempt to access nonexistent hosts or services.

4. P(TCP flags | dest port). This model learns the set of
normal TCP flag sequences for the first, next to last, and last
packet of a connection. A normal sequence is SYN (request
to open), FIN-ACK (request to close and acknowledge the
previous packet), and ACK (acknowledge the FIN). The

model generalizes across hosts, but is separate for each port
number, because the port number usually indicates the type
of service (mail, web, FTP, telnet, etc.). An anomaly can
result if a connection fails or is opened or closed abnormally,
possibly indicating an abuse of a service.

5. P(keyword | dest port). This model examines the text in the
incoming request from the reassembled TCP stream to learn
the allowable set of keywords for each application layer
protocol. A keyword is defined as the first word on a line of
input, i.e. the text between a linefeed and the following
space. ALAD examines only the first 1000 bytes, which is
sufficient for most requests. It also examines only the header
part (ending with a blank line) of SMTP (mail) and HTTP
(web) requests, because the header is more rigidly structured
and easier to model than the body (text of email messages or
form uploads). An anomaly indicates the use of a rarely used
feature of the protocol, which is common in many R2L
attacks.

As with PHAD, the anomaly score is tn/r, where r different values
were observed out of n training samples, and it has been t seconds
since the last anomaly was observed. An anomaly occurs only if
the value has never been observed in training. For example, Table
2 shows the keyword model for ports 80, 25, and 21, which are
the three ports with the highest n/r values.

Table 2. ALAD models for P(keyword | dest port) for ports 80,
25, and 21 after training on "inside" week 3 of the DARPA IDS
evaluation data set [9].

Attribute r/n Allowed Values
80 (HTTP) 13/83650 Accept-Charset:
 Accept-Encoding:
 Accept-Language:
 Accept:
 Cache-Control:
 Connection:
 GET
 Host:
 If-Modified-Since:
 Negotiate:
 Pragma:
 Referer:
 User-Agent:
25 (SMTP) 34/142610 (34 values...)
21 (FTP) 11/16822 (11 values...)

The first line of Table 2 says that out of 83,650 TCP
connections to port 80, that only 13 different keywords were
observed. These keywords are listed in the third column.

The total score assigned to a TCP connection is the sum of the
tn/r scores assigned by each of the five components. The keyword
model might contribute more than one score because there could
be more than one novel keyword.

4. THE 1999 DARPA IDS DATA SET
In 1998 and 1999, DARPA sponsored a project at Lincoln

Labs to evaluate intrusion detection systems [9]. They set up a
simulated local area network with a variety of different hosts and
a simulated Internet connection and attacked it with a variety of
published exploits. For each of the two tests, a number of
intrusion detection systems were evaluated on their ability to
detect these attacks given the network traffic, daily file system
dumps, audit logs, and BSM (Solaris system call) logs. Each
evaluation had two phases. During the first phase, participants

were given data to develop their systems that included both attack
free periods and labeled attacks (time, victim IP address, and
description of the attack). During the second phase, about six
months later, the participants were given new data sets with
unlabeled attacks, some of them new, and were rated by the
number of detections as a function of false alarm rate. After the
evaluation, the data sets and results were made available to other
researchers in intrusion detection.

The 1999 evaluation includes four real "victim" machines,
running unpatched Sun Solaris 2.5.1, SunOS 4.1.4, Linux 2.0.27,
and Windows NT 4.0, connected to a simulated local area
network and Internet through a real Cisco router over Ethernet.
The IDS data includes audit logs and daily dumps of the operating
system files on each victim machine, Solaris BSM (system call)
logs, and two network traffic sniffer logs, one "inside" between
the router and victims, and the other "outside" between the router
and the Internet. The first phase consisted of 3 weeks of data.
Weeks 1 and 3 contained no attacks, and were made available for
training anomaly detection systems. Week 2 contained labeled
attack data for testing. The second phase consisted of ten days
(weeks 4 and 5) containing 201 instances of 58 different attacks,
about half of which were novel with respect to the first phase.
Attacks were taken mostly from published sources such as
security mailing lists and cracker-oriented web sites. A few were
developed in-house for known vulnerabilities for which exploit
code was not available.

Eight organizations submitted 18 intrusion detection systems
for evaluation. An attack is counted as detected if the IDS
correctly identifies the IP address of the victim or attacker and the
time of any portion of the attack interval within 60 seconds. The
IDS was also required to assign a score to each alarm so that the
number of attacks and false alarms could be varied by discarding
alarms below a threshold. Duplicate detections of the same attack
are counted only once, but every false alarm is counted. The top
results reported by [9, Table 6] at a false alarm rate of 10 per day
(100 total) are shown in Table 3.

Table 3. Top results of the 1999 DARPA IDS evaluation at 10
false alarms per day [9, Table 6].

System Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Dmine 41/102 (40%)
Forensics 15/27 (55%)

The systems were evaluated on the percentage of attacks
detected out of those they were designed to detect. None were
designed to detect all attacks. Some only examined a subset of
the data (e.g. network traffic or file system dumps), or a subset of
the victims (e.g. only Solaris BSM data or NT audit logs). Some
were designed to detect only certain types of attacks (probes,
DOS, R2L, or U2R). Some used only signature detection, and
were therefore not designed to detect attacks not present in the
training data during week 2, although the top systems used a
combination of signature and anomaly detection.

Lippman reports that 77 of the 201 attack instances were
poorly detected, in that no system detected more than half of the
instances of that type [9, Table 4]. If we take the best results for
each of the 21 attack types, then only 15 instances (19%) were
detected.

To reduce the complexity of our experiments, we examined
only the "inside" network traffic logs. This detects attacks from
internally compromised hosts, but misses external attacks on the
router. We trained the system on 7 days of attack free traffic from
week 3, which consists of 2.9 GB of tcpdump files. We tested on
9 days of traffic during weeks 4 and 5, about 6.0 GB of data. One
day of inside traffic is missing (week 4, day 2), leaving 189
attacks, although 9 of them (selfping, snmpget, and ntfsdos)
generate no evidence in the data we used. This leaves 180
detectable attacks, of which 67 were poorly detected. We did not
make use of the labeled attack data from week 2.

5. EXPERIMENTAL RESULTS
We evaluated PHAD and ALAD by running them at the same

time on the DARPA IDS evaluation data set and merging the
results. Each system was trained on week 3 (7 days, attack free)
and evaluated on the 180 detectable labeled attacks from weeks 4
and 5. To merge the results, we set the two thresholds so that
equal numbers of alarms were taken from both systems, and so
that there were 100 total false alarms (10 per day including the
missing day) after removing duplicate alarms. An alarm is
considered a duplicate if it identifies the same IP address and the
same attack time within 60 seconds of a higher ranked alarm from
either system. We chose 60 seconds because DARPA criteria
allows a detection to be counted if the time is correctly identified
within 60 seconds of any portion of the attack period. Also, to be
consistent with DARPA, we count an attack as detected if it
identifies any IP address involved in the attack (either target or
attacker). Multiple detections of the same attack (that remain after
removing duplicates) are counted only once, but all false alarms
are counted.

In Table 4 we show the results of this evaluation. In the
column labeled det we list the number of attacks detected out of
the number of detectable instances, which does not include
missing data (week 4, day 2) or the three attack types (ntfsdos,
selfping, snmpget) that generate no inside traffic. Thus, only 180
of the 201 attack instances are listed.

In the last column of Table 4, we describe the PHAD and
ALAD anomalies that led to the detection, prior to removing
duplicate alarms. For PHAD, the anomaly is the packet header
field that contributed most to the overall score. For ALAD, each
of the anomalous components (up to 5) are listed. Based on these
descriptions, we adjusted the number of detections (column det)
to remove simulation artifacts and coincidental detections, and to
add detections by Ethernet address rather than IP address, which
would not otherwise be counted by DARPA rules. The latter case
occurs for arppoison, in which PHAD detects anomalous Ethernet
addresses in non-IP packets. Arppoison disrupts network traffic
by sending spoofed responses to ARP-who-has requests from a
compromised local host so that IP addresses are not correctly
resolved to Ethernet addresses.

The two coincidences are mscan (an anomalous Ethernet
address, overlapping an arppoison attack), and illegalsniffer (a
TCP checksum error). Illegalsniffer is a probe by a compromised
local host being used to sniff traffic, and is detectable only in the
simulation because it makes reverse DNS lookups to resolve
sniffed IP addresses to host names. Because the attack is
prolonged, and because all of the local hosts are victims,
coincidences are likely.

Table 4. Attacks in the 1999 DARPA IDS data set [9], and the number detected (det) out of the total number in the available data.
Detections are for merged PHAD and ALAD at 100 total false alarms, after removing coincidences and simulation artifacts (TTL field) and
adding detections by Ethernet address (arppoison). Attacks listed do not include the 12 attacks in week 4 day 2 (missing data) or 9 attacks
that leave no evidence in the inside network traffic (selfping, snmpget, and ntfsdos). Hard to detect attacks (identified by *) are those types
which were detected no more than half of the time by any of the 18 original participants [9, Table 4]. Attack descriptions are due to [8].

Type Attack and description (* = hard to detect) Det How detected
Probe illegalsniffer - compromised local host sniffs traffic 0/2 (1 coincidental TCP checksum error)
Probe ipsweep (clear) - ping random IP addresses 1/4 1 Ethernet packet size = 52, (1 TTL = 253)
Probe *ipsweep (stealthy - slow scan) 0/3 (2 TTL = 253)
Probe *ls - DNS zone transfer 0/2
Probe mscan - test multiple vulnerabilities 1/1 1 dest IP/port, flags (1 coincidental Ethernet dest)
Probe ntinfoscan - test multiple NT vulnerabilities 2/3 2 HTTP "HEAD", 1 FTP "quit", 1 "user", TCP RST, (2 TTL)
Probe portsweep (clear) - test multiple ports 1/4 1 FIN without ACK, (1 TTL)
Probe *portsweep (stealthy - slow scan) 2/11 2 FIN without ACK, (5 TTL)
Probe *queso - malformed packets fingerprint OS 3/4 2 FIN without ACK (1 TTL)
Probe *resetscan - probe with RST to hide from IDS 0/1
Probe satan - test multiple vulnerabilities 2/2 2 HTTP/ 1 SMTP "QUIT", finger /W, IP length, src IP, (TTL)
DOS apache2 - crash web server with long request 3/3 3 source IP, 1 HTTP "x" and flags, TCP options in reply
DOS *arppoison - spoofed replies to ARP-who-has 3/5 3 Ethernet src/dest address (non-IP packet)
DOS back - crash web server with "GET /////..." 0/4
DOS crashiis - crash NT webserver 5/7 4 source IP address, 1 unclosed TCP connection
DOS *dosnuke - URG data to NetBIOS crashes Windows 4/4 3 URG pointer, 4 flags = UAPF
DOS land - identical src/dest addr/ports crashes SunOS 0/1
DOS mailbomb - flood SMTP mail server 3/3 3 SMTP lowercase "mail" (1 TTL = 253)
DOS neptune - SYN flood crashes TCP/IP stack 0/4 (2 TTL = 253)
DOS pod (ping of death) - oversize IP pkt crashes TCP/IP 4/4 4 IP fragment pointer
DOS processtable - server flood exhausts UNIX processes 1/3 1 source IP address
DOS smurf - flood by forged ping to broadcast address 1/5 1 source IP address (2 TTL)
DOS syslogd - crash server with forged unresolvable IP 0/4
DOS *tcpreset - local spoofed RST closes connections 1/3 1 TCP connection not opened or closed
DOS teardrop - IP fragments with gaps crashes TCP/IP stack 3/3 3 frag ptr
DOS udpstorm - echo/chargen loop flood 2/2 2 UDP checksum error
DOS *warezclient - download illegal files by FTP 1/3 1 source IP address
DOS warezmaster - upload illegal files by FTP 1/1 1 source IP address
R2L dict (guess telnet/ftp/pop) - dictionary password guessing 3/7 2 FTP "user", 1 dest IP/port (POP3), 1 src IP
R2L framespoofer - trojan web page 0/1
R2L ftpwrite - upload "+ +" to .rhosts 0/2
R2L guest - simple password guessing 0/3
R2L httptunnel - backdoor disguised as web traffic 0/2
R2L imap - mailbox server buffer overflow 0/2
R2L named - DNS nameserver buffer overflow 0/3
R2L *ncftp - FTP server buffer overflow 4/5 4 dest IP/port, 1 SMTP "RSET", 3 auth "xxxx,25"
R2L *netbus - backdoor disguised as SMTP mail traffic 2/3 2 source IP address, (3 TTL)
R2L *netcat - backdoor disguised as DNS traffic 2/4 1 src/dest IP, (1 TTL)
R2L phf - exploit bad Apache CGI script 2/3 2 source IP, 1 null byte in HTTP header
R2L ppmacro - trojan PowerPoint macro in web page 1/3 1 source IP (and TTL)
R2L sendmail - SMTP mail server buffer overflow 2/2 2 source IP address, 2 global dest IP, 1 "Sender:"
R2L *sshtrojan - fake ssh client steals password 1/3 1 source IP address
R2L xlock - fake screensaver steals password 0/3
R2L xsnoop - keystrokes intercepted on open X server 0/3
U2R anypw - NT bug exploit 0/1
U2R casesen - NT bug exploit 2/3 2 FTP upload (dest IP/port 20, flags, FTP "PWD"), (1 TTL)
U2R eject - UNIX suid root buffer overflow 1/2 1 FTP upload (src IP, flags)
U2R fdformat - UNIX suid root buffer overflow 2/3 2 FTP upload (src IP, flags, FTP "STOR")
U2R ffbconfig - UNIX suid root buffer overflow 1/2 1 SMTP source IP address (email upload)
U2R *loadmodule - UNIX trojan shared library 0/2
U2R *perl - UNIX bug exploit 0/4
U2R ps - UNIX bug exploit 0/3
U2R *sechole - NT bug exploit 1/2 1 FTP upload (dest IP/port, flags, FTP "STOR"), (1 TTL)
U2R *sqlattack - database app bug, escape to user shell 0/2
U2R xterm - UNIX suid root buffer overflow 1/3 1 FTP upload (source IP, dest IP/port)
U2R yaga - NT bug exploit 1/4 1 FTP upload (src IP, FTP lowercase "user")
Data secret - copy secret files or access unencrypted 0/4
Total 70/180 (39%) ; and 23/65 (35%) of hard to detect attacks

There are 25 attacks detected by anomalous TTL values in
PHAD, which we believe to be simulation artifacts. TTL (time to
live) is an 8-bit counter decremented each time an IP packet is
routed in order to expire packets to avoid infinite routing loops.
Although small TTL values might be used to elude an IDS by
expiring the packet between the IDS and the target [13], this was
not the case because the observed values were large, usually 126
or 253. Such artifacts are unfortunate, but probably inevitable,
given the diff iculty of simulating the Internet [4]. A likely
explanation for these artifacts is that the machine used to simulate
the attacks was a different real distance from the inside sniffer
than the machines used to simulate the background traff ic. We
did not count attacks detected solely by TTL.

After adjusting the number of detections in the det column,
we detect 70 of 180 (39%) of attacks at 100 false alarms. Among
the poorly detected attacks [9, Table 4], we detect 23 of 77 (30%),
or 23 of 65 (35%) of the 180 detectable attacks in our data set.
Although our IDS does not perform well by itself, it does
outperform the best systems on these poorly detected attacks,
suggesting that it could be used as a component of a mult-layered
IDS to improve coverage of existing systems that use other
techniques.

5.1. Classification Of Anomalies
After examining the detected attacks by our anomaly detection

algorithms, we discovered that they generally fall i nto these five
categories.

1. Learned signatures - attempts to exploit bugs in the target
2. Induced anomalies - symptoms of a successful attack.
3. Evasion anomalies - attempts to elude the IDS.
4. Attacker errors - bugs in the attacking program.
5. User behavior - unexpected client addresses.

First, a security vulnerabilit y is an error, whether in software
design, coding, or system configuration. Attackers exploit these
errors. Because it is impossible to test software completely, some
errors will always be discovered in software after it has been
delivered and put to use. The errors that are least likely to be
discovered and patched are those that occur least often in normal
traff ic. Thus, the input required to invoke the error is li kely to be
unusual. We call such input a learned signature anomaly.
Examples include the urgent data in dosnuke or the fragmented IP
packets in pod and teardrop. Most of the time, the IDS learns
only a part of the signature. For example, it does not learn that
the urgent data must be directed to the NetBIOS port, or that the
IP fragments must have gaps or reassemble to more than 64K
bytes.

Second, sometimes the anomalous input is missed, but we can
observe anomalous behavior from the target after a successful
attack. This is similar to Forrest's host based anomaly detection
technique, except that the symptoms are observed in the output of
the target, rather than in the system calls that it makes. Examples
include the unusual TCP options generated by apache2 and the
anomalous destination Ethernet addresses resulting from
arppoison victims. We call these induced anomalies.

The third type of anomaly we discovered is one in which the
attacker tries to exploit errors in the IDS to hide the attack, for
example, FIN scanning by portsweep to prevent server accesses

from being logged. If the attempt backfires, as it does in this case,
we call it an evasion anomaly.

Fourth, the attacker might introduce arbitrary variations in the
data, which we can consider to be errors in the attacking software.
Examples include garbage in the apache2 and phf attacks, the use
of lowercase commands in dict, sendmail, and ntinfoscan, and the
UDP checksum error in udpstorm. We call these attacker error
anomalies. Most provide no clues as to the nature of the attack.

Finally, behavioral anomaly detection models users rather
than software. Most of the U2R attacks are discovered because
the exploit software is uploaded on an FTP server normally used
for downloads. Many R2L attacks are discovered because the
client IP address is not one of the usual users.

Table 5 shows the number of attacks detected in each anomaly
category, based on the anomaly description. The totals are more
than 100% because some attacks are detected by more than one
type of anomaly. For example, all three apache2 detections have
an unusual client IP address, but one also has the unusual
keyword "x" (an error), and another induces unusual TCP options
in the reply. It is not always clear whether an anomaly is an error
or part of the signature, so we use the principle that if the attack
could be easily changed to hide it, then it is an error. For
example, one apache2 attack is a malformed HTTP request:

x
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
... (repeated thousands of times)

But the other instances, which do not generate the same anomaly,
replace "x" with a normal "GET / HTTP/1.1". The attack
succeeds either way, so we consider "x" to be an error instead of
part of the signature.

Table 5. Detected attacks classified by the type of anomaly, and
the fraction of the 70 total detected attacks detected this way.

Anomaly Det/70 Attacks Detected
Learned
 Signature

24 (34%) PROBE: ipsweep, mscan, 2 ntinfoscan,
3 queso, 2 satan; DOS: crashiis, 4
dosnuke, 4 pod, 3 teardrop; R2L: ncftp,
2 sendmail

Induced 5 (7%) DOS: apache2, 3 arppoison, tcpreset
Evasion 3 (4%) PROBE: 3 portsweep
Attacker
 Error

10 (14%) DOS: apache2, 3 mailbomb, 2
udpstorm; R2L: 2 dict, phf; U2R: yaga

User
 Behavior

38 (54%) PROBE: mscan; DOS: 3 apache2, 5
crashiis, mailbomb, processtable,
smurf, warazclient, warezmaster; R2L:
dict, mailbomb, 4 ncftp, 2 netbus, 2
netcat, 2 phf, ppmacro, 2 sendmail,
sshtrojan; U2R: 2 casesen, 2 fdformat,
ffbconfig, sechole, xterm, yaga

5.2. Analysis of False Alarms
Table 6 shows the causes of the 100 false alarms in the

evaluation. A few alarms were generated by more than one
anomaly, so the total is more than 100.

Table 6. The 100 top false alarms detected by PHAD and ALAD.

Anomaly False alarms
TCP source IP address 35
Keyword (7 SMTP, 4 FTP, 3 auth, 2 HTTP) 16
TTL (time to live, simulation artifact) 9
TCP checksum (simulation artifact) 8
Outgoing TCP connection on server port 7
TOS (type of service) 7
Urgent data pointer or URG flags 7
Bad TCP connection (3 no SYN, no FIN, RST)5
Destination address/port 5
Packet size (Ethernet, IP, UDP) 3
Other (2 IP fragments, 2 TCP options) 4

From table 6 we can see that the types of anomalies that generate
false alarms are generally the same types that detect attacks. For
example, source and destination addresses and outgoing TCP
connections (FTP upload) which are responsible for the
behavioral detections (about half of the total) are also responsible
for almost half of the false alarms. Novel keywords, which detect
most attacker errors (14% of the total) are responsible for 16 false
alarms, about the same percentage. The errors occur in mostly the
same protocols as well , SMTP, FTP, and HTTP. This is
unfortunate, because it gives us no easy way to distinguish
between real attacks and false alarms.

A few false alarms are not responsible for any detections, in
particular TCP checksums and TOS (type of service). We thought
it suspicious that no checksum errors whatsoever occur in training
(Table 1), but many occur during testing. On inspection, we
found that the errors are the result of short IP packets that
fragment the TCP header. (These also generate IP fragment
anomalies, but the checksum contributes the most to the score).
There is no good reason for creating such short fragments, except
to elude the IDS [13], but no attack is labeled. Perhaps the
DARPA team intended to make the problem more diff icult, or
perhaps they just made an error and misconfigured one of the
hosts with a small MTU (message transmission unit). We also
found another example of unusual traff ic, TCP streams composed
of one byte packets with every other packet missing. Again, this
occurs in the test data and not in the training data, but there is no
attack (and no detection by PHAD or ALAD).

5.3. Coverage of PHAD and ALAD
From Table 4 we can classify each attack by whether it was

detected by PHAD, ALAD, or both. The results are shown in
Table 7.

Table 7. Contributions of PHAD and ALAD to the 70 attack
detections, grouped by attack category.

Type Total
Detected

By PHAD
only

By ALAD
only

By Both

Probe 12/37 7 4 1
DOS 32/59 17 15 0
R2L 17/49 0 17 0
U2R/Data 9/35 0 9 0
Total 70/180 24 45 1

There is almost no overlap between PHAD and ALAD. The
only attack detected by both is one instance of satan, in which

PHAD detects an anomalous IP packet length and ALAD detects
novel HTTP, SMTP, and finger keywords. PHAD detects mostly
probes and DOS attacks that exploit lower level network
protocols: ipsweep, portsweep, queso, arppoison, dosnuke, pod,
smurf, teardrop, udpstorm. ALAD detects user behavior
anomalies (all U2R and some R2L), and attempts to exploit errors
in application servers. These include most R2L attacks, as well as
DOS attacks aimed at servers (apache2, crashiis, mailbomb,
processtable), and probes for server vulnerabiliti es (satan, mscan,
ntinfoscan).

We can combine PHAD and ALAD to improve coverage
because they work in different ways to detect different attacks, but
the merge is not perfect. By themselves, PHAD detects 54 attacks
when the TTL field is excluded (for both detections and false
alarms), and ALAD detects 59. However, when they are merged,
we must raise the alarm thresholds in order to keep the total false
alarms to 100 (10 per day). This results in some true detections
being discarded, so the total is only 70 (or 73 excluding TTL false
alarms), not 54 + 59 = 113.

5.4. Overlap with SPADE
From Table 4 we note that we detect 23 of the 77 hard to

detect attacks from the original 1999 evaluation, whereas the
original participants detected at most 15 of these. Also, since
some of these systems detect more attacks than we do (Table 3),
we see that there is a significant non-overlap between them and
PHAD/ALAD. As we noted in section 5.3, it is this property of
non-overlap that allows PHAD and ALAD to be combined with
each other to increase total coverage.

In this section, we evaluate SPADE [17], which was not one
of the original DARPA participants, to see whether it overlaps
PHAD/ALAD. SPADE is a user behavioral anomaly detector
which models port numbers and IP addresses on incoming TCP
SYN (request to open) packets, similar to ALAD. However, since
SPADE is intended for actual use, there is no explicit training
period. It continues training throughout the entire run period and
assigns an anomaly score to each TCP connection based on the
distribution over the entire run (but with greater weight given to
recent history). Thus, when a second instance of an attack occurs,
it is li kely to receive a lower score due to being trained on the first
instance.

To test SPADE, we ran version 092200.1 as a plugin to
SNORT 1.7 [14] on the same data used for PHAD/ALAD
("inside" weeks 3, 4, and 5) in each of SPADE's 4 user selectable
models (Table 8). All other parameters were set to their default
values. SPADE, like PHAD/ALAD, reports an anomaly score, so
after discarding alarms during week 3, we set a threshold allowing
100 false alarms (10 per day) during the attack period.

Table 8. Attacks detected by SPADE at 10 false alarms per day.
Attacks not detected by PHAD/ALAD are shown in bold.

SPADE Model Detections/180
0. Bayes approximation of
 P(src IP/port, dest IP/port)

7 (1/3 apache2, 1/5 smurf, 1/4
perl, 1/1 mscan, 1/5 arppoison,
1/2 illegalsniffer, 1/4 syslogd)

1. P(src IP/port, dest IP/port) 1 (1/1 mscan)
2. P(src IP, dest IP/port) 8 (1/4 ps, 1/4 neptune, 1/2

eject, 1/4 yaga, 1/4 perl, 1/3
fdformat, 1/4 queso, 1/1 mscan)

3. P(dest IP/port) 7 (as in (2) except yaga)

SPADE models 0, 2, and 3 give the best performance. In each
of these models, 3 out of the 7 or 8 detections are not detected by
PHAD/ALAD. Again, we have a significant non-overlap,
suggesting that using a combined IDS would result in better
coverage than any system by itself.

It is important to stress that we cannot compare PHAD/ALAD
directly to SPADE or to the original DARPA participants with
regard to the number of attacks detected. SPADE lacks an
explicit training period. Preliminary experiments with PHAD
suggest that under similar conditions it would miss about half of
the attacks it now detects. Also, we used a fixed threshold rather
than the many variations of adaptive thresholds offered by
SPADE, some of which might have improved the results. We also
cannot compare PHAD/ALAD to the DARPA participants
because their evaluation was blind (no access to the test data),
because they were designed to detect different sets of attacks with
different data, because some use signature detection, and because
their evaluation criteria, although similar to ours, was not
identical.

6. IMPLEMENTATION
Our implementation of PHAD processes 2.9 gigabytes of

training data and 4.0 gigabytes of test data in 364 seconds (310
user + 54 system), or 95,900 packets per second on a Sparc Ultra
60 with a 450 MHz 64-bit processor, 512 MB memory and 4 MB
cache. The overhead is 23 seconds of CPU time per simulated
day, or 0.026% at the simulation rate. The wall time in our test
was 465 seconds (78% usage), consisting of 165 seconds of
training (77,665 packets per second) and 300 seconds of testing
(73,560 packets per second). The PHAD model uses negligible
memory: 34 fields times 32 pairs of 4-byte integers to represent
the bounds of each cluster, or 8 kilobytes total. The program is
about 400 lines of C++ code.

ALAD was implemented in two parts, a 400 line C++
program to reassemble TCP packets into streams, and a 90 line
Perl script to analyze them. Reassembly of 6.9 GB of data on a
750 MHz PC with 256 MB memory running Windows Me took
17 minutes, although no attempt was made at optimization, as this
part only had to be run once prior to developing the second part.
The output of part 1 is 20 MB of training data and 40 MB of test
data as two text files. Because of the 99% reduction in data, the
Perl script which implements ALAD runs in only 60 seconds on
the same PC.

ALAD stores all attributes and values (in Perl hashtables), but
there is no need to do so. Memory could be reduced to a few
kilobytes by storing only the attributes with large r/n and hashing
their associated values.

7. CONCLUDING REMARKS
We investigated network anomaly detection and saw that most

systems are rule based with the possible exception of IP addresses
and ports. We proposed extending the adaptive model to other
parts of the protocol, and described two techniques for doing so.
PHAD is a primitive packet model that knows very little about the
network or protocols it is modeling, or about which fields might
prove to be useful. ALAD combines traditional user modeling of
TCP services (ports and addresses) with a simple generic text-
based model of application protocols. Both models are
nonstationary. They assume that the probability of an event
depends on the time since it last occurred, regardless of any prior
occurrences. We believe that this model is superior to one based

on frequency counts. We also saw that memory requirements are
small, because we only need to model very low probability events.
We saw that modeling both user behavior and protocols (for
evidence of software errors) increases coverage to almost twice
that of user modeling alone.

Out of 180 attacks in the DARPA IDS evaluation data set,
PHAD and ALAD detect 70 (39% recall), with 100 false alarms
(41% precision). Although these models use pure anomaly
detection, they perform almost as well (by our measure) as
systems that combined both signature and anomaly detection in
the 1999 blind evaluation. More importantly, there is a
significant non-overlap between our IDS and other systems, so
that they can be combined to increase coverage. We detect 23 (by
our measure) of the 77 poorly detected attacks in the 1999
evaluation, compared to at most 15 for the original evaluation
participants. Likewise, there is a non-overlap with SPADE,
which detects attacks that we miss.

We found five categories of anomalies. By decreasing
frequency, these are:
• User behavior anomalies, as detected by traditional systems,

for example FTP uploads of U2R exploits on a server
normally used only for downloads.

• Attempts to exploit bugs in poorly tested features, such as the
malformed IP fragments of pod and teardrop.

• Bugs in the attacking code, such as UDP checksum errors in
udpstorm, or using lowercase text in sendmail and dict.

• Induced anomalies in the target after a successful attack, such
as the unusual TCP options in reply to apache2.

• Unsuccessful attempts to elude the IDS, such as FIN
scanning by portsweep.

We still have a long way to go before anomaly detection
becomes practical. The detection rate is too low, and the false
alarm rate is too high. Unlike signature detection, anomalies
often appear completely unrelated to the attacks that generated
them, which makes it difficult to display alarm messages that even
an expert in network protocols could understand. It is extremely
difficult to prepare good test data from which we can obtain
unbiased, repeatable results.

We have made some progress on one aspect of the anomaly
detection problem, that of modeling. However, there are still two
outstanding problems. First is the parsing problem. We had to
hard code rules into PHAD (field sizes and offsets) and ALAD
(words, lines, and headers) to parse the input into attributes. Our
goal is for the IDS to learn new protocols as they are encountered,
but our system would fail unless the new protocol had the same
syntactic structure as the existing ones.

Second, there is the combinatorial explosion problem of
combining attributes. In ALAD, we use combinations of the form
P(x,y) (e.g. P(dest IP, dest port)), and P(x|y) (e.g. P(src IP|dest
IP)), but these were ad-hoc. We knew that certain combinations
would give better results. Our goal is for the IDS to figure out
which combinations to use from among the exponential number of
possibilities. Of course there are general solutions (decision trees,
neural networks, etc.) but is there one efficient enough for
practical use on a network processing millions of bits per second?

Acknowledgments
This research is partially supported by DARPA (F30602-00-1-
0603).

References
[1] Anderson, Debra, Teresa F. Lunt, Harold Javitz, Ann

Tamaru, Alfonso Valdes, "Detecting unusual program
behavior using the statistical component of the Next-
generation Intrusion Detection Expert System (NIDES)",
Computer Science Laboratory SRI-CSL 95-06 May 1995.
http://www.sdl.sri.com/papers/5/s/5sri/5sri.pdf

[2] Bell, Timothy, Ian H. Witten, John G. Cleary, "Modeling for
Text Compression", ACM Computing Surveys (21)4, pp.
557-591, Dec. 1989.

[3] Barbará, D., N. Wu, S. Jajodia, "Detecting Novel Network
Intrusions using Bayes Estimators", First SIAM International
Conference on Data Mining, 2001,
http://www.siam.org/meetings/sdm01/pdf/sdm01_29.pdf

[4] Floyd, S. and V. Paxson, "Difficulties in Simulating the
Internet." IEEE/ACM Transactions on Networking Vol. 9,
no. 4, pp. 392-403, Aug. 2001.
http://www.icir.org/vern/papers.html

[5] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
"A Sense of Self for Unix Processes", Proceedings of 1996
IEEE Symposium on Computer Security and Privacy.
ftp://ftp.cs.unm.edu/pub/forrest/ieee-sp-96-unix.pdf

[6] Ghosh, A.K., A. Schwartzbard, M. Schatz, "Learning
Program Behavior Profiles for Intrusion Detection",
Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, April 9-12, 1999, Santa
Clara, CA. http://www.cigital.com/~anup/usenix_id99.pdf

[7] M. Handley, C. Kreibich and V. Paxson, "Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics", Proc. USENIX Security Symposium,
2001.

[8] Kendall, Kristopher, "A Database of Computer Attacks for
the Evaluation of Intrusion Detection Systems", Masters
Thesis, MIT, 1999.

[9] Lippmann, R., et al., "The 1999 DARPA Off-Line Intrusion
Detection Evaluation", Computer Networks 34(4) 579-595,
2000.

[10] Mahoney, M., P. K. Chan, "PHAD: Packet Header Anomaly
Detection for Identifying Hostile Network Traffic", Florida
Tech. technical report 2001-04, http://cs.fit.edu/~tr/

[11] Neumann, P., and P. Porras, "Experience with EMERALD to
DATE", Proceedings 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, Santa Clara, California,
April 1999, 73-80,
http://www.csl.sri.com/neumann/det99.html

[12] Paxson, Vern, "Bro: A System for Detecting Network
Intruders in Real-Time", Lawrence Berkeley National
Laboratory Proceedings, 7'th USENIX Security Symposium,
Jan. 26-29, 1998, San Antonio TX,
http://www.usenix.org/publications/library/proceedings
/sec98/paxson.html

[13] Ptacek, Thomas H., and Timothy N. Newsham, "Insertion,
Evasion, and Denial of Service: Eluding Network Intrusion
Detection", January, 1998,
http://www.robertgraham.com/mirror/Ptacek-Newsham-
Evasion-98.html

[14] Roesch, Martin, "Snort - Lightweight Intrusion Detection for
Networks", Proc. USENIX Lisa '99, Seattle: Nov. 7-12,
1999.

[15] Sasha/Beetle, "A Strict Anomaly Detection Model for IDS",
Phrack 56(11), 2000, http://www.phrack.org

[16] Sekar, R., M. Bendre, D. Dhurjati, P. Bollineni, "A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors". Proceedings of the 2001 IEEE Symposium on
Security and Privacy.

[17] SPADE, Silicon Defense,
http://www.silicondefense.com/software/spice/

[18] Wagner, David, and Drew Dean, "Intrusion Detection via
Static Analysis", Proc. 2001 IEEE Symposium on Security
and Privacy, http://www.cs.berkeley.edu/~daw/papers/

